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Results

• Classical “face space” accounts for 
behavioral effects in face perception (e.g., 
inversion, ORE, caricaturing, etc.) (Valentine, 

1991; Valentine et al., 1992; Lee et al., 2000)

• DCNN-based face space models within- and 
between-identity similarity (Hill et al., 2019)

• Natural testbed for modeling perceived 
likeness

• Face identities vary in appearance (e.g., viewpoint, facial hair, expression, etc.)
• Perceived likeness: extent to which a face image is perceived to represent an 

identity accurately (‘good likeness’) or not (‘not a good likeness’) (Ritchie et al., 2018)

• Inconsistent likeness ratings across participants (Hancock et al., 2009; White et al., 2017)

• Early ‘best likeness’: image averages (Brady et al., 2005), caricatures,  and anti-
caricatures (Lee et al., 2000; Kauffman et al., 2008)

• Recent best likeness: ’iconic’ (Ritchie et al., 2018) or exemplar images (Balas et al., 2023)

• Mixed results due to lack of control over image parameters/observer experience
• Perceived likeness may not relate to similarity-to-prototype (Balas et al., 2023)
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CMU Multi-PIE
(Gross et al., 2010)

• Approx. 755k images of 337 
non-celebrity identities
• 60% Caucasian

• 129 subjects returned for 4 
image capture sessions

• 15 viewpoints, 19 illumination 
conditions per session

• Images captured in rapid 
succession

Inception ResNet V1
(Sandberg, 2018)

• “FaceNet” repository
• ResNet-101 architecture
• Pre-trained on VGGFace-2 

(Cao et al., 2018)

• Face detection and alignment 
performed using MTCNN

• Extracted output from 
penultimate layer, 512-D 
descriptor vector per image

Are perceived-likeness ratings affected by 
viewpoint or illumination?
• 100 participants
• Controlled variation in image parameters 

across novel identities
• Simultaneously displayed all images of a 

given identity 
• Participants adjusted slider bar to indicate 

whether each image was a ‘good likeness’ 
or ‘not a good likeness’

• Collapsed ratings across participants

• Submit averaged likeness ratings to 2-factor 
repeated measures ANOVA:
• IV1 – viewpoint (-90°, -45°, 0°, 45°, 90°)
• IV2 – illumination (ambient, -45°, 0°, 45°)
• DV – perceived likeness rating Viewpoint: (F(4, 388) = 122.2, p < 0.0001); Illumination: (F(3, 291) = 62.07, p < 0.0001); Interaction: (F(12, 1164) = 57.03, p < 0)

Can likeness be modeled using a DCNN?
• Same images from Experiment 1 processed 

through face-identification DCNN 
• Generated likeness ratings relative to:

1. proximity to a central identity prototype
2. local area density

• Submit DCNN-based likeness ratings to 2-
factor repeated measures ANOVA (as in 
Experiment 1)

• Average together descriptors 
generated for all images of each 
given identity

• Identity-specific averages defined as 
central identity prototype

• Measure distance of each image to 
respective central identity prototype

• Normalize distances for each identity

• Generate distance matrix comparing cosine 
similarity of all pairs of same-identity descriptors

• Tally descriptors within one standard deviation of 
each point in identity-specific face space

• Number of “neighbors” indicates density of local 
area around each descriptor

• Descriptors with greater number of “neighbors” 
considered better likeness

Viewpoint: F (4, 264) = 202.2, p < 0.0001
Illumination: F (3, 198) = 7.195, p = 0.00013
Interaction: F(12, 792) = 16.55, p < 0.0001 

Viewpoint: F(4, 264) = 84.0, p < 0.0001 
Illumination: F (3, 198) = 19.08, p < 0.0001
Interaction: F(12, 792) = 16.04, p < 0.0001

• Controlled viewing history with set of 
previously-unfamiliar identities
• Identities learned with specific 

viewpoint (0° or 45°) or illumination 
(ambient or 45°)

• Collected likeness ratings for images with 
same or different viewpoint/illumination as 
seen previously

Do participants assign higher perceived-likeness ratings to face images that show an 
identity with the same viewpoint/illumination in which that identity was learned?

• Iterative stages of familiarization and rating 
(to accommodate working-memory load)

• Responses submitted to 2-factor ANOVA
• IV1: familiarized viewpoint/illumination
• IV2: rated viewpoint/illumination
• DV: perceived likeness

Familiarized viewpoint: n.s.; Rated viewpoint: n.s.
Interaction: F(1, 51) = 81.88, p < 0.0001 

Familiarized illumination: n.s.; Rated illumination: n.s.
Interaction: F(1, 51) = 75.17, p = < 0.0001 

In the absence of experience, 
viewpoint and illumination (and 

likely other cues) influence 
perceived-likeness.

Local-area density within an identity-
specific, DCNN-based face space 

provides a more robust account for 
how human participants rate 

perceived likeness than proximity to 
a central identity prototype.

For previously-viewed identities, 
participants assign higher perceived-
likeness ratings to images that match 

the viewpoint and illumination of 
previously-seen images of an 

identity.
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Deep Convolutional Neural Network
(DCNN)-based Face Space

This work currently is accessible as 
a publicly-available dissertation 

document hosted by The 
University of Texas at Dallas

Assess whether image parameters 
(i.e., viewpoint and illumination) 

by themselves affect the 
perceived likeness of a face image

Use a face space generated from a 
convolutional neural network to 

test competing models for 
measuring perceived likeness

Quantify how specific experience 
with an identity impacts perceived 
likeness of novel images showing 

the same identity

Goal 1: Goal 2: Goal 3:

Conclusion 1: Conclusion 2: Conclusion 3:

Perceived likeness:
• Important to control within-identity variation when comparing perceived-likeness ratings across identities
• Similarity to identity prototypes only partially explain human ratings – distributed experience matters more
• Possible for visually distinct images to elicit similarly-high likeness ratings
• Accounts for high likeness ratings assigned to both average-appearance images and anti-caricatures

• Experience matters - challenging to compare likeness ratings across raters without controlled experience

Modeling with CNNs:
• Utility of machine-learning models for testing psychologically-relevant hypotheses
• Given specific viewing experience, possible to estimate best perceived likeness of face identities

https://github.com/davidsandberg/facenet.git

