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Abstract

Faces provide information about a person’s identity, as well as their sex, age, and ethnicity.
People also infer social and personality traits from the face — judgments that can have important
societal and personal consequences. In recent years, deep convolutional neural networks (DCNNs)
have proven adept at representing the identity of a face from images that vary widely in view-
point, illumination, expression, and appearance. These algorithms are modeled on the primate
visual cortex and consist of multiple processing layers of simulated neurons. Here, we examined
whether a DCNN trained for face identification also retains a representation of the information in
faces that supports social-trait inferences. Participants rated male and female faces on a diverse
set of 18 personality traits. Linear classifiers were trained with cross validation to predict human-
assigned trait ratings from the 512 dimensional representations of faces that emerged at the top-
layer of a DCNN trained for face identification. The network was trained with 494,414 images of
10,575 identities and consisted of seven layers and 19.8 million parameters. The top-level DCNN
features produced by the network predicted the human-assigned social trait profiles with good
accuracy. Human-assigned ratings for the individual traits were also predicted accurately. We con-
clude that the face representations that emerge from DCNNs retain facial information that goes
beyond the strict limits of their training.
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1. Introduction
1.1. Background

The human face is the basis for a wide variety of judgments. From just a single glance,
we can recognize friends, family, and acquaintances. Faces also help us retrieve semantic
or emotional information about others (e.g., name, career, relation). In addition to being
the primary cue for identity, faces carry information useful for making visually derived
semantic categorizations (Bruce & Young, 1986). For example, we spontaneously per-
ceive the age, ethnicity, and gender of others (Cloutier, Mason, & Macrae, 2005; Macrae,
Quinn, Mason, & Quadflieg, 2005). Among these categorizations are the personality
inferences we make from faces (Bar, Neta, & Linz, 2006; Todorov, Said, Engell, &
Oosterhof, 2008). Although the human tendency to infer personality traits from faces is
well studied, much less is understood about the extent to which this information supports
or interacts with the information used for face identification.

From a computational perspective, Oosterhof and Todorov (2008) and Walker and
Vetter (2009) showed that human trait judgments can be modeled and manipulated reli-
ably by computer graphics programs. These studies also demonstrated that faces contain
quantifiable physical correlates for human social-trait judgments. In Oosterhof and
Todorov (2008), participants labeled neutral-expression face images with words that
related to social traits (e.g., sociable, mean, weird, confident). These responses were
reduced to 13-dimensional social-trait vectors that described each face, which were then
submitted to principal component analysis (PCA). This produced a trait space with two
main axes. The first axis was interpreted as ‘“trustworthiness/valence” and the second
axis was interpreted as face “dominance.” Next, Oosterhof and Todorov (2008) gener-
ated a face-shape space using three-dimensional laser scans of faces. This space was
used to produce three-dimensional models of faces that participants rated for trustwor-
thiness and dominance. Using the best linear fit, Oosterhof and Todorov (2008) found
that the fiducial points in the face-shape model could be manipulated to alter trait judg-
ments. The degree of these manipulations predicted whether human participants rated
faces as more or less trustworthy or dominant. Social information can also be inferred
from highly variable images (e.g., large changes in viewpoint, expression, illumination,
and age), albeit with a third important dimension in the trait space which is related to
youthful/attractiveness (Sutherland et al., 2013; Vernon, Sutherland, Young, & Hartley,
2014).

One limitation of Oosterhof and Todorov’s (2008) model is that it considers only face
shape and does not consider face reflectance or pigmentation. Walker and Vetter (2009)
addressed this limitation with a model that included both the shape and reflectance of
faces. They used 200 three-dimensional laser scans of faces to generate a three-dimen-
sional morphable model (Blanz & Vetter, 1999) and collected trait ratings on a sample of
faces. Using these ratings, they found the locations of faces in the space that had high
values on specific traits and calculated the average position of these faces, as well as the
direction of the vector toward this average from the global average in the space. To

85UB017 SUOWILLIOD 3AIIER.D 3qeatjdde 3y} Aq paupAoh a8 s3I YO ‘@SN JO S9N 10} Akeiq1 8UIIUO A8|IA UO (SUORIPLOD-PUR-SWRYW0D A8 |IM°ARRIq 1 U UO//SANY) SUORPUOD PUe S | 8U1 89S *[9202/20/c0] U0 AriqiTauliuo A8|IM ‘AiseAIUN 1jigepue A AQ 62221 'SBOO/TTTT 0T/I0p/Wod A3 im Areiq 1 ul|uo//Sdny wouy papeojumod ‘9 ‘6T0Z ‘60.9TSST



C. J. Parde et al./Cognitive Science 43 (2019) 3 of 19

generate faces with variable amounts of these traits, individual faces in the space were
moved along this trajectory to alter (decrease or increase) the presence of the trait.
Walker and Vetter (2009) showed that these manipulations could be controlled to affect
social trait inferences made by humans.

Combined, the work of Oosterhof and Todorov (2008) and Walker and Vetter (2009)
demonstrates that it is possible to use computer graphics models, driven by human rat-
ings, to “generate” faces that elicit specific social trait judgments. Consistent with these
generative findings, other studies have shown that for a limited number of traits, it is pos-
sible to learn a direct mapping from face images to trait judgments, without explicit con-
trol or knowledge of the underlying two- or three-dimensional structure of the face. For
example, using deep convolutional neural networks (DCNNs), Lewenberg, Bachrach,
Shankar, and Criminisi (2016) predicted social-trait judgments from face images. Lewen-
berg et al. (2016) crowd-sourced large numbers of “attribute” ratings from faces, on both
objective (e.g., hair color, gender) and subjective (e.g., attractiveness, humor) aspects of
facial appearance. Next, DCNNs were trained to classify images in a binary manner,
according to the presence or absence of each attribute. Lewenberg et al. (2016) predicted
objective attributes with very high accuracy (gender = 98.33%, ethnicity = 83.35%, hair
color = 91.69%, makeup = 92.87%, age = 88.83%). Three subjective traits also were
well-predicted, but to a lesser degree (attractiveness = 78.85%, humorous = 69.06%,
chubby = 61.38%). In converging work, McCurrie et al. (2017) trained DCNNs to predict
three subjective traits (trustworthiness, dominance, and IQ), as well as age. McCurrie
et al. (2017) measured the proportion of shared variance (R*) between the trait predictions
computed from their model and the trait ratings assigned by human participants. McCur-
rie et al. (2017) found significant agreement in all cases (trustworthiness R? = 0.43,
dominance R* = 0.46, age R* = 0.74, IQ R* = 0.27).

It has also been shown that the social-trait inferences made by humans can be pre-
dicted using the output from DCNNs trained for different tasks (Song, Linjie, Atalla, &
Cottrell, 2017). Song et al. (2017) predicted human-assigned social traits from the princi-
pal components (PCs) of the feature responses produced by networks trained for object
recognition, face identification, and facial landmark localization. They found that the
highest correlation between human-assigned traits and predicted traits could be obtained
using the features from a network trained for object recognition. This underscores the
widespread availability of trait information in the visual features used to represent diverse
images. However, the image set used by Song et al. (2017) did not control for emotional
expressions or image characteristics (pose, illumination, etc.). These variables are known
to influence the way humans perceive social traits (Said, Sebe, & Todorov, 2009). Thus,
the social-trait prediction performance reported by Song et al. (2017) was based on a
combination of features from face identity, expression, and image parameters. A more
fine-tuned analysis is necessary to determine the extent to which each of these factors can
contribute to the accuracy of the predictions. In this study, we focused primarily on prop-
erties of the face itself as a cue to social trait inferences.

Overall, the above studies indicate that DCNNs are capable of learning human-
assigned social traits from face images, as well as attributes such as gender and age. The
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features that support these trait inferences were made concrete by the work of Oosterhof
and Todorov (2008) and Walker and Vetter (2009). For example, wide eyes are seen as
trustworthy, whereas thin eyes and lips are seen as untrustworthy. These features are an
integral part of a person’s appearance and thereby a cue to their unique identity. An
empirical indication that identity and trait information may be related comes from a study
by Hassin and Trope (2000), who found that faces were judged to be more similar to one
another when they were rated as having comparable social traits.

This returns us to the question we address here. How does the information in faces
that gives rise to social-trait inferences relate to the information that specifies the iden-
tity of a face? To that end, we made use of a computational model trained exclusively
to identify faces. We asked whether the face representations produced by this network
retain the information needed to make inferences about a face’s social-trait appearance.
In other words, to what extent is it possible to use face representations optimized in
an identity-trained neural network as a representation that supports human-like trait
inferences?

Before proceeding, we digress briefly to define and discuss DCNNSs, a class of hierar-
chical neural networks introduced by Krizhevsky, Sutskever, and Hinton (2012). DCNNs
have changed the state-of-the-art in machine learning and have proven especially power-
ful for visual tasks such as face and object recognition (Krizhevsky et al., 2012; Taigman,
Yang, Ranzato, & Wolf, 2014). These networks were designed originally to model the
response properties of the primate ventral visual stream (Fukushima, 1988). DCNNs con-
sist of layers of simulated neurons that alternately convolve and pool input, while expand-
ing the representation in intermediary layers of the deep network (Hinton, Srivastava,
Krizhevsky, Sutskever, & Salakhutdinov, 2012). The final layer(s) of DCNNs are typi-
cally fully interconnected and serve to compress the representation at the top level of the
network into an abstract set of emergent features. These features form a highly compact
representational code—usually on the order of a few hundred elements. It is important to
note that the success of deep learning is in part due to the availability of extremely large,
open-source, identity-labeled training datasets.

For face identification, a major accomplishment of DCNNSs is their visual robustness to
changes in viewpoint, illumination, expression, and appearance (AbdAlmageed et al.,
2016; Chen, Patel, & Chellappa, 2016; Ranjan, Sankaranarayanan, Castillo, & Chellappa,
2017; N. Zhang et al., 2015). This is a consequence of the fact that DCNN architectures
for face identification are trained on large numbers of identities and use multiple, variable
images of each identity. DCNNs trained in this manner have consistently yielded state-of-
the-art results on the well-tested Labeled Faces in the Wild and YouTube Faces datasets
(Huang, Ramesh, Berg, & Learned-Miller, 2007; Parkhi, Vedaldi, & Zisserman, 2015;
Schroff, Kalenichenko, & Philbin, 2015; Sun, Wang, & Tang, 2014; Wolf, Hassner, &
Maoz, 2011; Zhou, Cao, & Yin, 2015).

For present purposes, the compact nature of the face representations produced by
DCNNSs, as well as the impressive ability of these representations to support identifica-
tion, makes them an ideal tool for probing the co-dependence of trait and identity infor-
mation in faces.
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1.2. Overview

We tested the interdependence of identity and social-trait information in the top-level
features of a DCNN trained for face identification. To study this, we collected social-trait
ratings from participants for a large number of face images. Next, we obtained identity
descriptors for each of the face images using a state-of-the-art face-identification DCNN
(Sankaranarayanan, Castillo, Alavi, & Chellappa, 2016). We used the DCNN representa-
tions and the human-assigned trait ratings to address four questions. First, we asked
whether the social-trait ratings we collected modeled a trait space similar to that described
in previous research (Fiske, Cuddy, & Glick, 2006; Oosterhof & Todorov, 2008; Walker &
Vetter, 2009; Wiggins, Phillips, & Trapnell, 1989). This was tested by interpreting the first
two axes produced by a multivariate analysis of the human trait ratings.

Second, we verified that the network used in this study produced an identity code pow-
erful enough to support recognition. Specifically, we computed Receiver Operating Char-
acteristic (ROC) curves to measure identification performance on the faces in our dataset,
using the top-level features produced by the network as the representation of each face.

Third, we asked whether the top-level descriptors produced for each image by the face-
identification DCNN could be used to predict the human-assigned social trait ratings. We
trained and tested a linear regression model with cross-validation and compared the similar-
ity between the predicted trait profile and the human-generated trait profile for each face.

Fourth, we asked whether social traits could be predicted individually. To answer this,
we measured the prediction error for each social trait.

2. Methods — human ratings
2.1. Participants

A total of 85 participants completed the data-collection portion of this experiment (20
males, 65 females, aged 18-30, M = 21). Participants consisted mostly of undergraduate
students from The University of Texas at Dallas. Participants enrolled in a psychology
course were compensated for their participation with one credit toward that course. Partici-
pants not enrolled in a psychology course received no compensation. Of the 85 participants,
one male and one female were excluded from analysis, because their arrival time overlapped
with additional participants and they completed the experiment in an alternate setting.

2.2. Face stimuli

The face stimuli presented in this study were selected from the Human ID Database
(O’Toole et al., 2005). To control for effects attributable to the race of the stimulus, only
images of Caucasian identities were used in this experiment. All images showed individuals
with a neutral expression. A total of 280 images were selected, depicting 192 distinct identi-
ties. Some identities (n = 83) appeared in the dataset multiple times to allow for verification
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of the network’s face—identification accuracy (see Section 4.2). In total, 109 identities
appeared once, 78 identities appeared twice, and five identities appeared three times. For
the data collection task, to make the workload for participants manageable, the 280 images
were divided into four sets containing 70 images each (19 male, 51 female). All participants
were assigned randomly to rate one of the sets. There were no duplicated identities within
each set. Participants were unfamiliar with the identities in the images they were shown.

2.3. Social traits

The list of social traits used in this study was derived from the Big Five Factors of
Personality (Gosling, Rentfrow, & Swann, 2003). The social traits listed by Gosling et al.
(2003) constitute a generalizable and representative selection of traits pertaining to indi-
vidual personalities. Each trait in the Big Five is classified into one of five personality
domains — openness, conscientiousness, extraversion, agreeableness, or neuroticism. For
the data collection task, we selected 18 traits that were either from this list or were
related to items from this list (see Fig. 1). We selected multiple traits from each of the
five domains listed by Gosling et al. (2003). It should be noted that the traits we chose
for this study are different than those used in previous work (e.g., Oosterhof & Todorov,
2008). The traits here were chosen to reflect a wide range of personality traits that fit the-
oretically into the Big Five axes, as well as face perception research that examines trait
inferences. We consider the relationship of these terms to those used in previous work by
constructing the trait space described in Section 4.1.

Original Trait List

Talkative
Energetic
Assertive Reduced Trait List
Shy Talkative
Quiet Assertive
Warm Shy
Sympathetic Quiet
Helpful Warm
Trusting Artistic
Soft-hearted Efficient
Reliable Careless
Artistic Impulsive
Efficient Anxious
Thorough Lazy
Careless
Impulsive
Anxious
Lazy

Fig. 1. List of social traits considered for this study. The original trait list shows the traits rated by participants.
The reduced trait list shows the 11 unique ways participants used traits from this original list. Traits from the
original list whose value correlated strongly with one another (>0.8 Cohen’s d) were averaged together.
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2.4. Procedure for human trait ratings

Participants in this study were asked to decide whether each item in a list of traits
applied to a given face. Every participant viewed 70 face images (19 male, 51 female).
Each face was presented on a computer screen next to a list of 18 social traits. For each
trait, the participant was asked to select whether the trait: (a) applied perfectly, (b)
applied somewhat, or (c) did not apply, to the face being shown. Previous studies exam-
ining social-trait inferences have used scales ranging from two points (Lewenberg et al.,
2016) to nine points (Song et al., 2017), indicating that researchers’ range of the response
options has varied substantially. We used a 3-point scale to limit variance that might
occur based on individual differences in the way participants used the scale. There was
no default selection. Participants were able to advance to the next face only after making
a selection for each trait. Participants were allowed as much time as they needed to rate
each face. Fig. 2 provides an example page from this data collection task.

Trait ratings were collected from 19 and 23 participants per face image. The data com-
prised an n x m trait matrix, X, where n represents the number of faces and m represents
the number of traits. Any given cell of the matrix X;; contained the mean of participants’
ratings for the jth trait on the ith face. The columns of this trait matrix were then con-
verted into z-scores so that each face was represented by its deviation from the average
ratings across the faces. The social-trait inferences assigned to different images of the

i
Do these terms apply to this face? & ff
®

Talkative
Energetic
Warm

Shy

Quiet
Sympathetic
Assertive
Helpful
Artistic
Anxious
Trusting
Soft-Hearted
Efficient
Thorough
Careless
Impulsive
Reliable
Lazy

next face

Fig. 2. A screenshot taken from the data collection task completed by participants. Participants viewed 70
(19 males, 51 females) faces in total, organized into sets according to gender. The list of traits was displayed
next to each face. For each trait, participants were asked to select whether the trait “applies perfectly,”
“applies somewhat,” or “does not apply” to the face being viewed.
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same individual were more correlated than the trait inferences assigned to images
showing different identities (same identity, r = .56; different identity, » = .13).

Several trait labels were applied very similarly by participants, indicating that at a higher
level of abstraction, some subsets of traits measure the same underlying variable. The
dimensionality of the trait space was reduced to minimize the effect of these duplicated
traits within the dataset. To do this, traits that correlated highly with one another (Pearson
correlation coefficient, » > .80) were averaged together and treated as a single trait. This
reduced the final number of traits from 18 to 11 by combining (a) talkative and energetic;
(b) warm, sympathetic, softhearted, trusting, helpful, and reliable; and (c) efficient and thor-
ough. The traits talkative and energetic both imply levels of activity and were combined
and relabeled as ralkative. The traits warm, sympathetic, soft-hearted, trusting, helpful, and
reliable all imply positive valence and were combined and relabeled as warm. The traits ef-
ficient and thorough both imply capability and were combined and relabeled as efficient.
The social trait space considered in this study was comprised of the 11 traits that remained.

3. Methods for DCNN trait analysis
3.1. DCNN network specification

The neural network features for each face were generated from the DCNN described
in Table 1. This network was trained for face identification and has achieved state-of-the-
art performance on the IJB-A dataset (Klare et al., 2015). Parametric rectified linear units
(PReLU) are used to compute the activation function. The final output layer consists of
512 units. The network was trained on the CASIA Webface database, which consists of
494,414 images depicting 10,575 identities (Yi, Lei, Liao, & Li, 2014).

Table 1

The deep network architecture of the face recognition network described by Sankaranarayanan et al. (2016).
The analyses presented in this study examine the features extracted from the Fc7 layer of this network, for
each of the images in our dataset

Deep Network Architecture

Layer Kernel Size/Stride No. of Parameters
Convl 11 x 11/4 35k
Conv2 5 x 5/2 614 k
Conv3 3 x 32 885 k
Conv4 3 x 32 1.3 M
Conv5 3 x 3/1 885 k
Conv6 3 x 3/1 590 k
Fc6 1,024 94 M
Fc7 512 524 k
Fc8 10,575 55 M
Softmax loss 19.8 M
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3.2. DCNN face representation

To carry out the simulation, the DCNN processed the 280 face images rated by partici-
pants to produce a unique 512-dimensional feature descriptor vector for each image.
These feature descriptors were considered as the face identification network’s representa-
tion of each face.

4. Analysis and results
4.1. Consistency of social-trait space with previous findings

First, we examined the underlying social-trait space from our human-assigned trait rat-
ings to compare with previous findings (Fiske et al., 2006; Oosterhof & Todorov, 2008;
Wiggins et al., 1989). This was important given that the social traits used in this study
differed from those used in previous work. To this end, we submitted our participants’
responses to a principal component analysis (PCA). PCA is a multivariate analysis tech-
nique that uses singular value decomposition to rotate the data and create a new space
defined by orthogonal components that are ordered according to the percentage of vari-
ance they explain. Here, PCA was applied to the human trait inferences. The coordinates
of each trait were plotted along the first two principal components and visualized to
ensure parity with the existing literature (Fig. 3).

The first component produced by a PCA of the human-assigned traits was interpreted
as approachability and separates traits such as ralkative, efficient, and warm, from traits
such as anxious, and quiet. The second component was interpreted as dominance and
separates traits such as assertive and impulsive from traits such as shy, quiet, and anxious.
These results are generally consistent with previous studies, which identified two primary
social-trait components corresponding to slight variations on the axes we found: affiliation
and dominance (Wiggins et al., 1989), warmth and competence (Fiske et al., 2006), and
trustworthiness and dominance (Oosterhof & Todorov, 2008).

4.2. Face-identification accuracy

To test the DCNN for identification accuracy, we computed the cosine similarity
between the 512-dimensional feature descriptors for all possible pairs of the 280 face
images in our stimulus set. This resulted in an n x n similarity matrix, where n repre-
sents the number of face images. Identification accuracy was analyzed using an ROC
curve to measure the separability between same-identity (match) and different-identity
(non-match) image comparisons. The same-identity distribution contained the similarity
scores for all image pairs in which the same individual was shown in both images. In all
cases, these were two different images of the same person, taken over a span of weeks or
months. The different-identity distribution consisted of all pairs of images depicting two
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Social Trait Space
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Fig. 3. Principal component analysis of the trait ratings collected from human participants. The 11 traits used
to create our trait space are positioned according to their factor scores on the first (x-axis) and second (y-axis)
components. The correlation between traits can be interpreted according to the angle between them, where a
0° angle implies perfect positive correlation, a 90° angle implies no correlation, and a 180° angle implies
perfect negative correlation.

different individuals. We considered only scores from the upper triangle of the symmetric
similarity matrix.

The ROC showed near-perfect performance on our stimulus set, as measured using the
area under the curve (AUC = 0.995). This illustrates the high quality of the identity infor-
mation in the top-level DCNN features.

4.3. Trait-profile predictions from DCNN face representations

A regression model was trained to predict the human-generated social-trait responses
from the face representation generated by the face-identification DCNN. The trait ratings
were represented in an n X m matrix, Y, where each of the n rows represented one of the
280 stimuli and each of the m columns represented one of the 11 traits. The face recogni-
tion features were represented in an n X k matrix, X, where each of the n rows again rep-
resented one of the 280 stimuli and each of the k columns represented one of the 512
top-level features. The regression model used to train the mapping from DCNN features
to traits was:

Y=XB+FE
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where B represents the learned k& x m weight matrix and E represents the error matrix. This
model was trained using cross validation, wherein the regression model was learned using
all but one of the stimulus images and was tested on the left-out image. In cases where the
identity in the test image also appeared in the training images, all images of that identity
were held out from the training set. This produced an n x m output matrix, Y, similar to Y,
but where all trait values were model predictions rather than human responses.

Human-generated trait vectors and computer-predicted trait vectors were compared
using their cosine similarity. To test for statistical significance, we compared the average
cosine similarity between the human- and computer-generated social-trait vectors to a null
hypothesis distribution. This null distribution was created by a permutation test where the
values within each column of the n x m trait matrix, ¥, were reordered randomly. This
effectively destroyed the relationship between social traits and stimuli, but preserved the
underlying distribution of scores within each trait. The regression model was then re-com-
puted. This was repeated for 1,000 iterations. After each iteration, the average cosine sim-
ilarity between the 280 human-generated trait vectors and the 280 computer-predicted
trait vectors was calculated.

The average cosine similarity between the human trait ratings and the computer-predic-
tions (i.e., true cosines) was compared to the cosine similarities from the null distribution.
The results show that the vectors of social-trait inferences predicted using the actual
model were significantly more similar (p < .001) to the human-generated traits than the
social-trait vectors predicted from the null distribution. There was no overlap between the
mean of the true cosines (M = 0.353) and any of the cosines computed in the null
distribution (M = 0.078). Thus, we conclude that the top-level features produced by the
face-identification network contain information that supports human-generated social-trait
ratings.

Next, we explored the degree to which social-trait information is distributed throughout
the top-level features from the face-identification DCNN. This was tested by eliminating
varying amounts of top-level DCNN features from the space and then re-computing the
regression model. Deleting features containing information critical to social-trait predic-
tion should reduce the cosine similarity between the human-generated trait vectors and
the computer predictions. Alternatively, deleting “noisy” features (i.e., features consisting
of only information extraneous to the social-trait prediction task) should increase the
accuracy of the trait predictions.

The top-level features from the DCNN were ordered according to their contribution to
the regression model. The contribution of each feature was assessed using its regression
weights and was measured to be the sum of absolute values across the rows in the k
(number of features) by m (number of traits) weight matrix. Rows with the lowest sums
contributed the least to the regression model and rows with the highest sums contributed
the most. Beginning with the lowest 5%, an increasing number of features were removed
and the regression models were recomputed. This was repeated until the prediction accu-
racy, indicated by cosine similarity, began to decrease. A decrease in prediction accuracy
occurred after removing 27.5% of the features. The remaining 72.5% of features represent
the optimal set of predictors. The average cosine similarity between human-generated trait
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vectors from this optimized regression model was significantly higher (M = 0.533,
p < .001) than the average cosine similarities computed using the null distribution
(M = 0.078). There was no overlap between the average of the true cosines and the cosi-
nes computed in the null distribution. These results show that social trait information is
not evenly distributed throughout the top-level feature space learned by the face-identifi-
cation DCNN. The importance of individual top-level DCNN features for either identifi-
cation or for predicting social-trait inferences should be explored in-depth in future work.
Here, we report the finding that accurate trait-inference prediction requires just a subset
of the features from the overall top-level DCNN feature space.

4.4. Predicting individual traits from face representations

The previous regression experiment established that a profile of social-trait information
is represented in the top-level features of the face-identification DCNN. We now address
the extent to which individual social traits can be predicted in isolation. Regression-model
predictions were computed for each of the 11 individual traits. The resulting n x [/
dimensional trait vectors were compared to the corresponding columns from the original
n X m trait matrix using the coefficient of determination (Rz). This provides a direct
measure of the similarity between each predicted trait and its human-generated counter-
part.

The coefficients of determination for predicting each trait individually are presented in
Fig. 4. In Fig. 5, we plot the prediction accuracy for each trait contrasted against a null
distribution. This figure shows that all of the social traits considered in this study were
predicted at levels significantly above chance. The best-predicted traits here were

Warm @) 0.344
Talkative @) 0.245
Shy O 0.253
Quiet O 0.261
Lazy O 0.253
Impulsive @) 0.394
Efficient (@) 0.107
Careless O 0.19
Assertive O 0.125
Artistic O 0.165
Anxious @) 0.303

Coefficient of Determination

Fig. 4. Coefficients of determination (R*) for each of the traits predicted by the top-level DCNN features.
Traits are listed along the y-axis, and the coefficient of determination between predicted trait ratings and
human-generated trait ratings are listed along the x-axis. The similarity between human-assigned traits and
computer predictions was assessed both in terms of R* as well as prediction error (Fig. 5).
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Fig. 5. Trait prediction error (difference from human ratings) when using the actual model (red line) versus
a null distribution (gray). The dashed blue line represents a Bonferroni-corrected alpha level of o = 0.00225
(0.025/11) on the null distribution. All traits were predicted with significantly less error when using the actual
model than when using the null distribution.

impulsive, anxious, and warm. These social traits were predicted at levels comparable to
the subjective trait predictions reported for the three traits examined in McCurrie et al.
(2017). In the present case, however, predictions were made from a network trained for
face identification, whereas in McCurrie et al. (2017), the network was trained explicitly
for trait prediction.

5. Discussion

Human faces provide a rich source of information that can be used to identify individ-
uals, as well as to form first impressions of strangers. Both topics have received consider-
able attention in the literature, but they have never been investigated simultaneously. In
this study, we examined the co-existence of identity and trait information in faces. The
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main findings are as follows. First, we demonstrate that information related to social and
personality traits is retained in the top-level features of a DCNN trained for face identifi-
cation. This finding complements previous work illustrating that DCNNs retain specific
information about images that is not directly relevant for object/face recognition (Hong,
Yamins, Majaj, & Dicarlo, 2016; Parde et al., 2017). Second, we show that DCNN face
“identity” representations predict human-generated social-trait inferences, both at the indi-
vidual-trait level and at the level of full trait profiles. Third, we show that the DCNN
used in this study identifies faces with high accuracy, allowing us to consider the reten-
tion of social trait information in the context of a high-performing identification system.
Fourth, we verify that the particular social trait ratings we collected in this study, which
differ somewhat from previous studies, produce a social-trait space similar to those
reported in previous work (Oosterhof & Todorov, 2008; Walker & Vetter, 2009).

To understand the implications of these findings, it is useful to return to what we
know about the nature of the physical information that supports trait inferences and to
expand our discussion beyond simple face structure. The literature offers evidence that
three sources of information contribute to social-trait inferences (Sutherland et al., 2013):
face structure (Oosterhof & Todorov, 2008; Walker & Vetter, 2009), emotional facial
expressions (Said et al., 2009; Sutherland et al., 2013), and image -characteristics
(Todorov & Porter, 2014). As noted previously, evidence for the role of face structure in
trait inferences comes from findings indicating that the manipulation of face structure,
using computer graphics models, affects human trait judgments in predictable ways
(Oosterhof & Todorov, 2008; Walker & Vetter, 2009). The fact that face structure con-
tributes substantially to both face identity and trait inferences is perhaps not surprising,
but makes it clear that information relevant for one of these tasks may also be relevant
for the other.

In addition to face structure, both posed facial expressions and expressions that are
derived from the structure of neutral faces have been shown to influence trait ratings
(Oosterhof & Todorov, 2008). For example, Montepare and Dobish (2003) showed that
deliberate changes in the emotional expression of a face influence social trait ratings.
These differences in the perception of social traits reflect the structural resemblance of a
face to a specific emotion (Said et al., 2009). Further, a recent study by Todorov and
Porter (2014) showed that image characteristics, which include photometric variables
such as illumination and image quality, are linked to social-trait perception. It has also
been shown that DCNNs trained for face identification retain information pertaining to
these image characteristics (Parde et al., 2017). Together, these studies provide further
evidence that identity and social traits can coexist in a unitary representation. In this
study, face emotion and image characteristics were controlled to reduce the noise associ-
ated with social-trait judgments. Because of this, the present results may underestimate
the extent to which it is possible to predict social-trait inferences from more naturalistic
stimuli (see Song et al., 2017 for an approach that allows face expression to support trait
classification).

Returning to the question of how trait and identity information are related, it is impor-
tant to remember that face structure is relevant for face identification, but that facial
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expression and image characteristics are not. The finding that facial expression and image
characteristics contribute to trait inferences makes it clear that first impressions are based
not only on the face itself, but also on the specific circumstances in which a face is
encountered. Although the behavioral and neural literatures reflect a conceptual division
between social-trait and identity processing (Haxby, Hoffman, & Gobbini, 2000),
advances in modeling face identification with DCNNs demonstrate that this division is
not computationally necessary to account for the creation of a unitary face representation
that can support both identity and trait perception.

DCNN s are designed to model the computational processes seen in the primate ventral
visual stream (Fukushima, 1988; Krizhevsky et al., 2012). There are some questions con-
cerning the validity of the claim that these networks are good models of ventral stream
visual processing, given that their architectures are not well-suited for complex, sequen-
tial behavior (Edelman, 2016). However, research has shown that the response properties
of units in the intermediate layers of a DCNN predict the response properties of neurons
in primate visual area V4. Moreover, units in the top level of the DCNN predict the
responses of neurons in the inferotemporal (IT) cortex (Yamins & DiCarlo, 2016; Yamins
et al., 2014). Although interpreting the similarities between the ventral visual stream and
DCNNs requires caution, the finding that these networks can accommodate both identity
and social-trait information is consistent with recent evidence suggesting specific modifi-
cations to the distributed model of face processing (Haxby et al., 2000).

The distributed model posits a functional division of identity and social information
from faces, whereby invariant identity information from faces (e.g., face structure) is
processed in ventral stream face areas, and social (e.g., changeable aspects, including
emotion, gaze, and head rotation) information is processed in the dorsal stream face areas
(posterior Superior Temporal Sulcus). Although this theory is consistent with much exist-
ing data on the neural processing of faces (Allison, Puce, & McCarthy, 2000; Gobbini &
Haxby, 2007; Puce, Allison, Bentin, Gore, & McCarthy, 1998), recent work suggests that
the ventral pathway is also sensitive to some changeable information from faces. For
example, Duchaine and Yovel (2015) suggest that the ventral temporal cortex processes
emotional expression. More concretely, it has been shown that the fusiform face area
(FFA) responds to faces regardless of whether people attend to the expression of the faces
they view (Ganel, Valyear, Goshen-Gottstein, & Goodale, 2005). In addition, the intensity
of observed facial expressions modulates neural responses in the FFA (Surguladze et al.,
2003).

Further work is required to determine whether these responses arise purely from faces,
or from faces and bodies in motion. However, combined with the present results, these
neural findings advance support of the distributed model modification suggested by Duch-
aine and Yovel (2015). Specifically, this modification posits that ventral temporal repre-
sentations support both identity and social judgments about faces. This modification does
not alter the distributed model’s original hypothesis that social information from facial
motion is processed in the dorsal stream (pSTS). Rather, it suggests that both ventral and
dorsal stream face areas can play a role in the social processing of faces. In considering
DCNN properties in this context, it is worth noting that there is now strong evidence that
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DCNNS retain specific information about face images, in addition to face categories (e.g.,
identity). That DCNNs are able to generalize well is paradoxical, given their enormous
degrees of freedom. The topic of why DCNNs generalize is discussed in depth in
O’Toole, Castillo, Parde, Hill, and Chellappa (2018) and C. Zhang, Bengio, Hardt, Recht,
and Vinyals (2017). Presently, the surprising generalizability of DCNNs implies that these
networks have the potential to model trait inferences based on expression and image-char-
acteristics in addition to facial structure (cf., O’Toole et al., 2018; Parde et al., 2017).
Future work should consider ways to dissect the sources of face-identity and face-image
information that allow DCNNs to predict social trait inferences (see methods proposed by
Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015).

In conclusion, we present the novel finding that social-trait information and identity
information are not independent from one another. Understanding how social traits and
identity are linked can provide clues to the structure of high-level visual information pro-
cessing in general face perception. The simple and direct linear classification methods
used in this study underscore the fact that trait information is readily accessible within
the representations produced by DCNNs trained for face identification. The presence of
this trait information may constrain theories of how neural codes for faces can serve mul-
tiple face processing tasks.

Acknowledgments

The authors were supported in part by the Intelligence Advanced Research Projects
Activity (IARPA). This research is based upon work supported by the Office of the
Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activ-
ity (IARPA), via IARPA R&D Contract No. 2014-14071600012. The views and conclu-
sions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied,
of the ODNI, TIARPA, or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copy-
right annotation thereon.

References

AbdAlmageed, W., Wu, Y., Rawls, S., Harel, S., Hassner, T., Masi, 1., Choi, J., Lekust, J., Kim, J.,
Natarajan, P., & Nevatia, R. (2016). Face recognition using deep multi-pose representations. 2016 IEEE
Conference on Applications of Computer Vision (WACV), (1), 1-9. https://doi.org/10.1109/WACV.2016.
7477555.

Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region.
Trends in Cognitive Sciences, 4(7), 267-278. https://doi.org/10.1016/S1364-6613(00)01501-1.

Bar, M., Neta, M., & Linz, H. (2006). Very first impressions. Emotion, 6(2), 269-278. https://doi.org/10.
1037/1528-3542.6.2.269.

85UB017 SUOWILLIOD 3AIIER.D 3qeatjdde 3y} Aq paupAoh a8 s3I YO ‘@SN JO S9N 10} Akeiq1 8UIIUO A8|IA UO (SUORIPLOD-PUR-SWRYW0D A8 |IM°ARRIq 1 U UO//SANY) SUORPUOD PUe S | 8U1 89S *[9202/20/c0] U0 AriqiTauliuo A8|IM ‘AiseAIUN 1jigepue A AQ 62221 'SBOO/TTTT 0T/I0p/Wod A3 im Areiq 1 ul|uo//Sdny wouy papeojumod ‘9 ‘6T0Z ‘60.9TSST


https://doi.org/10.1109/WACV.2016.7477555
https://doi.org/10.1109/WACV.2016.7477555
https://doi.org/10.1016/S1364-6613(00)01501-1
https://doi.org/10.1037/1528-3542.6.2.269
https://doi.org/10.1037/1528-3542.6.2.269

C. J. Parde et al./Cognitive Science 43 (2019) 17 of 19

Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques — SIGGRAPH 99 (pp. 187-194).
https://doi.org/10.1145/311535.311556.

Bruce, V., & Young, A. (1986). Understanding face recognition Copyright. British Journal of Psychology, 77
(77), 305-327.

Chen, J. C., Patel, V. M., & Chellappa, R. (2016). Unconstrained face verification using deep CNN features.
2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016. https://doi.org/10.1109/
wacv.2016.7477557

Cloutier, J., Mason, M. F., & Macrae, C. N. (2005). The perceptual determinants of person construal:
Reopening the social-cognitive toolbox. Journal of Personality and Social Psychology, 88(6), 885-894.
https://doi.org/10.1037/0022-3514.88.6.885.

Duchaine, B., & Yovel, G. (2015). A revised neural framework for face processing. Annual Review of Vision
Science, 1(1), 393—416. https://doi.org/10.1146/annurev-vision-082114-035518.

Edelman, S. (2016). The minority report: Some common assumptions to reconsider in the modelling of the
brain and behaviour. Journal of Experimental & Theoretical Artificial Intelligence, 28(4), 751-776.
https://doi.org/10.1080/0952813X.2015.1042534.

Fiske, S. T., Cuddy, A. J. C., & Glick, P. (2006). Universal dimensions of social cognition: Warmth and
competence. Trends in Cognitive Sciences, 11(2), 77-83. https://doi.org/10.1016/j.tics.2006.11.005.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual. Pattern Recognition,
1, 119-130.

Ganel, T., Valyear, K. F., Goshen-Gottstein, Y., & Goodale, M. A. (2005). The involvement of the “fusiform
face area” in processing facial expression. Neuropsychologia, 43(11), 1645-1654. https://doi.org/10.1016/].
neuropsychologia.2005.01.012.

Gobbini, M. 1., & Haxby, J. V. (2007). Neural systems for recognition of familiar faces. Neuropsychologia,
45(1), 32—41. https://doi.org/10.1016/j.neuropsychologia.2006.04.015.

Gosling, S. D., Rentfrow, P. J., & Swann, W. B. (2003). A very brief measure of the Big-Five personality
domains. Journal of Research in Personality, 37(6), 504-528. https://doi.org/10.1016/S0092-6566(03)
00046-1.

Hassin, R., & Trope, Y. (2000). Facing faces: Studies on the cognitive aspects of physiognomy. Journal of
Personality and Social Psychology, 78(5), 837-852. https://doi.org/10.1037/0022-3514.78.5.837.

Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face
perception. Trends in Cognitive Sciences, 4(6), 223-233. https://doi.org/10.1016/S1364-6613(00)01482-0.
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. R. (2012). Improving neural
networks by preventing co-adaptation of feature detectors. arXiv Preprint arXiv:1207.0580. 1-18.

https://doi.org/arxiv:1207.0580

Hong, H., Yamins, D. L. K., Majaj, N. J., & Dicarlo, J. J. (2016). Explicit information for category-
orthogonal object properties increases along the ventral stream. Nature Neuroscience, 19(4), 613-622.
https://doi.org/10.1038/nn.4247.

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for
studying face recognition in unconstrained environments. University of Massachusetts Amherst Technical
Report, 1, 7-49. https://doi.org/10.1.1.122.8268

Klare, B. F., Klein, B., Taborsky, E., Blanton, A., Cheney, J., Allen, K., Grother, P., Mah, A., & Jain, A. K.
(2015). Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07—
12—June, (pp. 1931-1939). https://doi.org/10.1109/cvpr.2015.7298803

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural
networks. Advances in Neural Information Processing Systems, 1-9. https://doi.org/10.1016/j.protcy.2014.
09.007

85UB017 SUOWILLIOD 3AIIER.D 3qeatjdde 3y} Aq paupAoh a8 s3I YO ‘@SN JO S9N 10} Akeiq1 8UIIUO A8|IA UO (SUORIPLOD-PUR-SWRYW0D A8 |IM°ARRIq 1 U UO//SANY) SUORPUOD PUe S | 8U1 89S *[9202/20/c0] U0 AriqiTauliuo A8|IM ‘AiseAIUN 1jigepue A AQ 62221 'SBOO/TTTT 0T/I0p/Wod A3 im Areiq 1 ul|uo//Sdny wouy papeojumod ‘9 ‘6T0Z ‘60.9TSST


https://doi.org/10.1145/311535.311556
https://doi.org/10.1109/wacv.2016.7477557
https://doi.org/10.1109/wacv.2016.7477557
https://doi.org/10.1037/0022-3514.88.6.885
https://doi.org/10.1146/annurev-vision-082114-035518
https://doi.org/10.1080/0952813X.2015.1042534
https://doi.org/10.1016/j.tics.2006.11.005
https://doi.org/10.1016/j.neuropsychologia.2005.01.012
https://doi.org/10.1016/j.neuropsychologia.2005.01.012
https://doi.org/10.1016/j.neuropsychologia.2006.04.015
https://doi.org/10.1016/S0092-6566(03)00046-1
https://doi.org/10.1016/S0092-6566(03)00046-1
https://doi.org/10.1037/0022-3514.78.5.837
https://doi.org/10.1016/S1364-6613(00)01482-0
https://doi.org/arxiv:1207.0580
https://doi.org/10.1038/nn.4247
https://doi.org/10.1.1.122.8268
https://doi.org/10.1109/cvpr.2015.7298803
https://doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/10.1016/j.protcy.2014.09.007

18 of 19 C. J. Parde et al./Cognitive Science 43 (2019)

Lewenberg, Y., Bachrach, Y., Shankar, S., & Criminisi, A. (2016). Predicting personal traits from facial images
using convolutional neural networks augmented with facial landmark information. In IJCAI International
Joint Conference on Artificial Intelligence, January (pp. 1676—1682).

Macrae, C. N., Quinn, K. A., Mason, M. F., & Quadflieg, S. (2005). Understanding others: The face and
person construal. Journal of Personality and Social Psychology, 89(5), 686—695. https://doi.org/10.1037/
0022-3514.89.5.686.

McCurrie, M., Beletti, F., Parzianello, L., Westendorp, A., Anthony, S., & Scheirer, W. J. (2017). Predicting
first impressions with deep learning. In Proceedings of the 12th IEEE International Conference on
Automatic Face and Gesture Recognition, FG 2017 (pp. 518-525). https://doi.org/10.1109/fg.2017.147

Montepare, J. M., & Dobish, H. (2003). The contribution of emotion perceptions and their
overgeneralizations to trait impressions. Journal of Nonverbal Behavior, 27(4), 237-254. https://doi.org/
10.1023/A:1027332800296.

Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of the National
Academy of Sciences, 105(32), 11087-11092. https://doi.org/10.1073/pnas.0805664105.

O’Toole, A. J., Castillo, C. D., Parde, C., Hill, M. Q., & Chellappa, R. (2018). Face space representations in
deep convolutional neural networks. Trends in Cognitive Sciences, 22(9), 794-809.

O’Toole, A. J., Harms, J., Snow, S. L., Hurst, D. R., Pappas, M. R., Ayyad, J. H., & Abdi, H. (2005). A
video database of moving faces and people. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(5), 812—816. https://doi.org/10.1109/TPAMI.2005.90.

Parde, C. J., Castillo, C., Hill, M. Q., Colon, Y. I., Sankaranarayanan, S., Chen, J. C., & Otoole, A. J.
(2017). Face and image representation in deep CNN features. In Proceedings of the 12th IEEE
International Conference on Automatic Face and Gesture Recognition, FG 2017 (pp. 673-680). https://
doi.org/10.1109/£g.2017.85

Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In Proceedings of the British
Machine Vision Conference 2015 (Section 3) (pp. 41.1-41.12). https://doi.org/10.5244/c.29.41

Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in humans
viewing eye and mouth movements. The Journal of Neuroscience, 18(6), 2188-2199. https://doi.org/10.
1523/jneurosci.2161-10.2010.

Ranjan, R., Sankaranarayanan, S., Castillo, C. D., & Chellappa, R. (2017). An all-in-one convolutional neural
network for face analysis. In 2017 12th IEEE International Conference on Automatic Face & Gesture
Recognition (pp. 17-24). https://doi.org/10.1109/fg.2017.137

Said, C. P., Sebe, N., & Todorov, A. (2009). Structural resemblance to emotional expressions predicts
evaluation of emotionally neutral faces. Emotion, 9(2), 260-264. https://doi.org/10.1037/a0014681.

Sankaranarayanan, S., Castillo, C., Alavi, A., & Chellappa, R. (2016). Triplet similarity embedding for face
verification. In 2016 IEEE Sth International Conference on Biometrics Theory, Applications and Systems
(BTAS) (pp. 1-8). https://doi.org/10.1109/btas.2016.7791205

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and
clustering. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 07—12—June (pp. 815-823). https://doi.org/10.1109/cvpr.2015.7298682

Song, A., Linjie, L., Atalla, C., & Cottrell, G. W. (2017). Learning to see people like people: Predicting
social impressions of faces. arXiv:1705.04282v1.

Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation by joint identification-verification.
Advances in Neural Information Processing Systems, 1988-1996, https://doi.org/10.1109/CVPR.2014.244.
Surguladze, S. A., Brammer, M. J., Young, A. W., Andrew, C., Travis, M. J., Williams, S. C. R., & Phillips,
M. L. (2003). A preferential increase in the extrastriate response to signals of danger. Neurolmage, 19(4),

1317-1328. https://doi.org/10.1016/S1053-8119(03)00085-5.

Sutherland, C. A. M., Oldmeadow, J. A., Santos, I. M., Towler, J., Michael Burt, D., & Young, A. W.
(2013). Social inferences from faces: Ambient images generate a three-dimensional model. Cognition, 127
(1), 105-118. https://doi.org/10.1016/j.cognition.2012.12.001.

85UB017 SUOWILLIOD 3AIIER.D 3qeatjdde 3y} Aq paupAoh a8 s3I YO ‘@SN JO S9N 10} Akeiq1 8UIIUO A8|IA UO (SUORIPLOD-PUR-SWRYW0D A8 |IM°ARRIq 1 U UO//SANY) SUORPUOD PUe S | 8U1 89S *[9202/20/c0] U0 AriqiTauliuo A8|IM ‘AiseAIUN 1jigepue A AQ 62221 'SBOO/TTTT 0T/I0p/Wod A3 im Areiq 1 ul|uo//Sdny wouy papeojumod ‘9 ‘6T0Z ‘60.9TSST


https://doi.org/10.1037/0022-3514.89.5.686
https://doi.org/10.1037/0022-3514.89.5.686
https://doi.org/10.1109/fg.2017.147
https://doi.org/10.1023/A:1027332800296
https://doi.org/10.1023/A:1027332800296
https://doi.org/10.1073/pnas.0805664105
https://doi.org/10.1109/TPAMI.2005.90
https://doi.org/10.1109/fg.2017.85
https://doi.org/10.1109/fg.2017.85
https://doi.org/10.5244/c.29.41
https://doi.org/10.1523/jneurosci.2161-10.2010
https://doi.org/10.1523/jneurosci.2161-10.2010
https://doi.org/10.1109/fg.2017.137
https://doi.org/10.1037/a0014681
https://doi.org/10.1109/btas.2016.7791205
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109/CVPR.2014.244
https://doi.org/10.1016/S1053-8119(03)00085-5
https://doi.org/10.1016/j.cognition.2012.12.001

C. J. Parde et al./Cognitive Science 43 (2019) 19 of 19

Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the gap to human-level
performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 1701-1708). https://doi.org/10.1109/cvpr.2014.220

Todorov, A., & Porter, J. M. (2014). Misleading first impressions: Different for different facial images of the
same person. Psychological Science, 25(7), 1404—1417. https://doi.org/10.1177/0956797614532474.

Todorov, A., Said, C. P., Engell, A. D., & Oosterhof, N. N. (2008). Understanding evaluation of faces on
social dimensions. Trends in Cognitive Sciences, 12(12), 455-460. https://doi.org/10.1016/].tics.2008.10.
001.

Vernon, R. J. W., Sutherland, C. A. M., Young, A. W., & Hartley, T. (2014). Modeling first impressions
from highly variable facial images. Proceedings of the National Academy of Sciences, 111(32), E3353—
E3361. https://doi.org/10.1073/pnas.1409860111.

Walker, M., & Vetter, T. (2009). Portraits made to measure: Manipulating social judgments about individuals
with a statistical face model. Journal of Vision, 9(11), 1-13. https://doi.org/10.1167/9.11.12.

Wiggins, J. S., Phillips, N., & Trapnell, P. (1989). Circular reasoning about interpersonal behavior: Evidence
concerning some untested assumptions underlying diagnostic classification. Journal of Personality and
Social Psychology, 56(2), 296-305.

Wolf, L., Hassner, T., & Maoz, 1. (2011). Face recognition in unconstrained videos with matched background
similarity. I[EEE Conference on Computer Vision and Pattern Recognition (CVPR), 529-534.

Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory
cortex. Nature Neuroscience, 19(3), 356-365. https://doi.org/10.1038/nn.4244.

Yamins, D. L. K., Hong, H., Cadieu, C. F.,, Solomon, E. A., Seibert, D., & Dicarlo, J. J. (2014).
Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings
of the National Academy of Sciences, 111(23), 8619—-8624. https://doi.org/10.1073/pnas.1403112111.

Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. arXiv Preprint
arXiv:1411.7923. Available at: http://arxiv.org/abs/1411.7923

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H. (2015). Understanding neural networks through
deep visualization. Deep Learning Workshop, 31st International Conference on Machine Learning, 1-12.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep learning requires
re-thinking generalization. arXiv Preprint arXiv:1611.03530.

Zhang, N., Paluri, M., Taigman, Y., Fergus, R., Bourdev, L., & Berkeley, U. C. (2015). Beyond frontal
faces: Improving person recognition using multiple cues. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 4804-4813.

Zhou, E., Cao, Z., & Yin, Q. (2015). Naive-deep face recognition: Touching the limit of LFW benchmark or
not? arXiv Preprint arXiv:1501.04690. https://doi.org/10.1103/physrevd.91.045023

85UB017 SUOWILLIOD 3AIIER.D 3qeatjdde 3y} Aq paupAoh a8 s3I YO ‘@SN JO S9N 10} Akeiq1 8UIIUO A8|IA UO (SUORIPLOD-PUR-SWRYW0D A8 |IM°ARRIq 1 U UO//SANY) SUORPUOD PUe S | 8U1 89S *[9202/20/c0] U0 AriqiTauliuo A8|IM ‘AiseAIUN 1jigepue A AQ 62221 'SBOO/TTTT 0T/I0p/Wod A3 im Areiq 1 ul|uo//Sdny wouy papeojumod ‘9 ‘6T0Z ‘60.9TSST


https://doi.org/10.1109/cvpr.2014.220
https://doi.org/10.1177/0956797614532474
https://doi.org/10.1016/j.tics.2008.10.001
https://doi.org/10.1016/j.tics.2008.10.001
https://doi.org/10.1073/pnas.1409860111
https://doi.org/10.1167/9.11.12
https://doi.org/10.1038/nn.4244
https://doi.org/10.1073/pnas.1403112111
http://arxiv.org/abs/1411.7923
https://doi.org/10.1103/physrevd.91.045023

