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Abstract

Faces provide information about a person’s identity, as well as their sex, age, and ethnicity.

People also infer social and personality traits from the face — judgments that can have important

societal and personal consequences. In recent years, deep convolutional neural networks (DCNNs)

have proven adept at representing the identity of a face from images that vary widely in view-

point, illumination, expression, and appearance. These algorithms are modeled on the primate

visual cortex and consist of multiple processing layers of simulated neurons. Here, we examined

whether a DCNN trained for face identification also retains a representation of the information in

faces that supports social-trait inferences. Participants rated male and female faces on a diverse

set of 18 personality traits. Linear classifiers were trained with cross validation to predict human-

assigned trait ratings from the 512 dimensional representations of faces that emerged at the top-

layer of a DCNN trained for face identification. The network was trained with 494,414 images of

10,575 identities and consisted of seven layers and 19.8 million parameters. The top-level DCNN

features produced by the network predicted the human-assigned social trait profiles with good

accuracy. Human-assigned ratings for the individual traits were also predicted accurately. We con-

clude that the face representations that emerge from DCNNs retain facial information that goes

beyond the strict limits of their training.
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1. Introduction

1.1. Background

The human face is the basis for a wide variety of judgments. From just a single glance,

we can recognize friends, family, and acquaintances. Faces also help us retrieve semantic

or emotional information about others (e.g., name, career, relation). In addition to being

the primary cue for identity, faces carry information useful for making visually derived

semantic categorizations (Bruce & Young, 1986). For example, we spontaneously per-

ceive the age, ethnicity, and gender of others (Cloutier, Mason, & Macrae, 2005; Macrae,

Quinn, Mason, & Quadflieg, 2005). Among these categorizations are the personality

inferences we make from faces (Bar, Neta, & Linz, 2006; Todorov, Said, Engell, &

Oosterhof, 2008). Although the human tendency to infer personality traits from faces is

well studied, much less is understood about the extent to which this information supports

or interacts with the information used for face identification.

From a computational perspective, Oosterhof and Todorov (2008) and Walker and

Vetter (2009) showed that human trait judgments can be modeled and manipulated reli-

ably by computer graphics programs. These studies also demonstrated that faces contain

quantifiable physical correlates for human social-trait judgments. In Oosterhof and

Todorov (2008), participants labeled neutral-expression face images with words that

related to social traits (e.g., sociable, mean, weird, confident). These responses were

reduced to 13-dimensional social-trait vectors that described each face, which were then

submitted to principal component analysis (PCA). This produced a trait space with two

main axes. The first axis was interpreted as “trustworthiness/valence” and the second

axis was interpreted as face “dominance.” Next, Oosterhof and Todorov (2008) gener-

ated a face-shape space using three-dimensional laser scans of faces. This space was

used to produce three-dimensional models of faces that participants rated for trustwor-

thiness and dominance. Using the best linear fit, Oosterhof and Todorov (2008) found

that the fiducial points in the face-shape model could be manipulated to alter trait judg-

ments. The degree of these manipulations predicted whether human participants rated

faces as more or less trustworthy or dominant. Social information can also be inferred

from highly variable images (e.g., large changes in viewpoint, expression, illumination,

and age), albeit with a third important dimension in the trait space which is related to

youthful/attractiveness (Sutherland et al., 2013; Vernon, Sutherland, Young, & Hartley,

2014).

One limitation of Oosterhof and Todorov’s (2008) model is that it considers only face

shape and does not consider face reflectance or pigmentation. Walker and Vetter (2009)

addressed this limitation with a model that included both the shape and reflectance of

faces. They used 200 three-dimensional laser scans of faces to generate a three-dimen-

sional morphable model (Blanz & Vetter, 1999) and collected trait ratings on a sample of

faces. Using these ratings, they found the locations of faces in the space that had high

values on specific traits and calculated the average position of these faces, as well as the

direction of the vector toward this average from the global average in the space. To
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generate faces with variable amounts of these traits, individual faces in the space were

moved along this trajectory to alter (decrease or increase) the presence of the trait.

Walker and Vetter (2009) showed that these manipulations could be controlled to affect

social trait inferences made by humans.

Combined, the work of Oosterhof and Todorov (2008) and Walker and Vetter (2009)

demonstrates that it is possible to use computer graphics models, driven by human rat-

ings, to “generate” faces that elicit specific social trait judgments. Consistent with these

generative findings, other studies have shown that for a limited number of traits, it is pos-

sible to learn a direct mapping from face images to trait judgments, without explicit con-

trol or knowledge of the underlying two- or three-dimensional structure of the face. For

example, using deep convolutional neural networks (DCNNs), Lewenberg, Bachrach,

Shankar, and Criminisi (2016) predicted social-trait judgments from face images. Lewen-

berg et al. (2016) crowd-sourced large numbers of “attribute” ratings from faces, on both

objective (e.g., hair color, gender) and subjective (e.g., attractiveness, humor) aspects of

facial appearance. Next, DCNNs were trained to classify images in a binary manner,

according to the presence or absence of each attribute. Lewenberg et al. (2016) predicted

objective attributes with very high accuracy (gender = 98.33%, ethnicity = 83.35%, hair
color = 91.69%, makeup = 92.87%, age = 88.83%). Three subjective traits also were

well-predicted, but to a lesser degree (attractiveness = 78.85%, humorous = 69.06%,

chubby = 61.38%). In converging work, McCurrie et al. (2017) trained DCNNs to predict

three subjective traits (trustworthiness, dominance, and IQ), as well as age. McCurrie

et al. (2017) measured the proportion of shared variance (R2) between the trait predictions

computed from their model and the trait ratings assigned by human participants. McCur-

rie et al. (2017) found significant agreement in all cases (trustworthiness R2 = 0.43,

dominance R2 = 0.46, age R2 = 0.74, IQ R2 = 0.27).

It has also been shown that the social-trait inferences made by humans can be pre-

dicted using the output from DCNNs trained for different tasks (Song, Linjie, Atalla, &

Cottrell, 2017). Song et al. (2017) predicted human-assigned social traits from the princi-

pal components (PCs) of the feature responses produced by networks trained for object

recognition, face identification, and facial landmark localization. They found that the

highest correlation between human-assigned traits and predicted traits could be obtained

using the features from a network trained for object recognition. This underscores the

widespread availability of trait information in the visual features used to represent diverse

images. However, the image set used by Song et al. (2017) did not control for emotional

expressions or image characteristics (pose, illumination, etc.). These variables are known

to influence the way humans perceive social traits (Said, Sebe, & Todorov, 2009). Thus,

the social-trait prediction performance reported by Song et al. (2017) was based on a

combination of features from face identity, expression, and image parameters. A more

fine-tuned analysis is necessary to determine the extent to which each of these factors can

contribute to the accuracy of the predictions. In this study, we focused primarily on prop-

erties of the face itself as a cue to social trait inferences.

Overall, the above studies indicate that DCNNs are capable of learning human-

assigned social traits from face images, as well as attributes such as gender and age. The
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features that support these trait inferences were made concrete by the work of Oosterhof

and Todorov (2008) and Walker and Vetter (2009). For example, wide eyes are seen as

trustworthy, whereas thin eyes and lips are seen as untrustworthy. These features are an

integral part of a person’s appearance and thereby a cue to their unique identity. An

empirical indication that identity and trait information may be related comes from a study

by Hassin and Trope (2000), who found that faces were judged to be more similar to one

another when they were rated as having comparable social traits.

This returns us to the question we address here. How does the information in faces

that gives rise to social-trait inferences relate to the information that specifies the iden-

tity of a face? To that end, we made use of a computational model trained exclusively

to identify faces. We asked whether the face representations produced by this network

retain the information needed to make inferences about a face’s social-trait appearance.

In other words, to what extent is it possible to use face representations optimized in

an identity-trained neural network as a representation that supports human-like trait

inferences?

Before proceeding, we digress briefly to define and discuss DCNNs, a class of hierar-

chical neural networks introduced by Krizhevsky, Sutskever, and Hinton (2012). DCNNs

have changed the state-of-the-art in machine learning and have proven especially power-

ful for visual tasks such as face and object recognition (Krizhevsky et al., 2012; Taigman,

Yang, Ranzato, & Wolf, 2014). These networks were designed originally to model the

response properties of the primate ventral visual stream (Fukushima, 1988). DCNNs con-

sist of layers of simulated neurons that alternately convolve and pool input, while expand-

ing the representation in intermediary layers of the deep network (Hinton, Srivastava,

Krizhevsky, Sutskever, & Salakhutdinov, 2012). The final layer(s) of DCNNs are typi-

cally fully interconnected and serve to compress the representation at the top level of the

network into an abstract set of emergent features. These features form a highly compact

representational code—usually on the order of a few hundred elements. It is important to

note that the success of deep learning is in part due to the availability of extremely large,

open-source, identity-labeled training datasets.

For face identification, a major accomplishment of DCNNs is their visual robustness to

changes in viewpoint, illumination, expression, and appearance (AbdAlmageed et al.,

2016; Chen, Patel, & Chellappa, 2016; Ranjan, Sankaranarayanan, Castillo, & Chellappa,

2017; N. Zhang et al., 2015). This is a consequence of the fact that DCNN architectures

for face identification are trained on large numbers of identities and use multiple, variable

images of each identity. DCNNs trained in this manner have consistently yielded state-of-

the-art results on the well-tested Labeled Faces in the Wild and YouTube Faces datasets

(Huang, Ramesh, Berg, & Learned-Miller, 2007; Parkhi, Vedaldi, & Zisserman, 2015;

Schroff, Kalenichenko, & Philbin, 2015; Sun, Wang, & Tang, 2014; Wolf, Hassner, &

Maoz, 2011; Zhou, Cao, & Yin, 2015).

For present purposes, the compact nature of the face representations produced by

DCNNs, as well as the impressive ability of these representations to support identifica-

tion, makes them an ideal tool for probing the co-dependence of trait and identity infor-

mation in faces.
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1.2. Overview

We tested the interdependence of identity and social-trait information in the top-level

features of a DCNN trained for face identification. To study this, we collected social-trait

ratings from participants for a large number of face images. Next, we obtained identity

descriptors for each of the face images using a state-of-the-art face-identification DCNN

(Sankaranarayanan, Castillo, Alavi, & Chellappa, 2016). We used the DCNN representa-

tions and the human-assigned trait ratings to address four questions. First, we asked

whether the social-trait ratings we collected modeled a trait space similar to that described

in previous research (Fiske, Cuddy, & Glick, 2006; Oosterhof & Todorov, 2008; Walker &

Vetter, 2009; Wiggins, Phillips, & Trapnell, 1989). This was tested by interpreting the first

two axes produced by a multivariate analysis of the human trait ratings.

Second, we verified that the network used in this study produced an identity code pow-

erful enough to support recognition. Specifically, we computed Receiver Operating Char-

acteristic (ROC) curves to measure identification performance on the faces in our dataset,

using the top-level features produced by the network as the representation of each face.

Third, we asked whether the top-level descriptors produced for each image by the face-

identification DCNN could be used to predict the human-assigned social trait ratings. We

trained and tested a linear regression model with cross-validation and compared the similar-

ity between the predicted trait profile and the human-generated trait profile for each face.

Fourth, we asked whether social traits could be predicted individually. To answer this,

we measured the prediction error for each social trait.

2. Methods — human ratings

2.1. Participants

A total of 85 participants completed the data-collection portion of this experiment (20

males, 65 females, aged 18–30, M = 21). Participants consisted mostly of undergraduate

students from The University of Texas at Dallas. Participants enrolled in a psychology

course were compensated for their participation with one credit toward that course. Partici-

pants not enrolled in a psychology course received no compensation. Of the 85 participants,

one male and one female were excluded from analysis, because their arrival time overlapped

with additional participants and they completed the experiment in an alternate setting.

2.2. Face stimuli

The face stimuli presented in this study were selected from the Human ID Database

(O’Toole et al., 2005). To control for effects attributable to the race of the stimulus, only

images of Caucasian identities were used in this experiment. All images showed individuals

with a neutral expression. A total of 280 images were selected, depicting 192 distinct identi-

ties. Some identities (n = 83) appeared in the dataset multiple times to allow for verification

C. J. Parde et al. / Cognitive Science 43 (2019) 5 of 19
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of the network’s face–identification accuracy (see Section 4.2). In total, 109 identities

appeared once, 78 identities appeared twice, and five identities appeared three times. For

the data collection task, to make the workload for participants manageable, the 280 images

were divided into four sets containing 70 images each (19 male, 51 female). All participants

were assigned randomly to rate one of the sets. There were no duplicated identities within

each set. Participants were unfamiliar with the identities in the images they were shown.

2.3. Social traits

The list of social traits used in this study was derived from the Big Five Factors of

Personality (Gosling, Rentfrow, & Swann, 2003). The social traits listed by Gosling et al.

(2003) constitute a generalizable and representative selection of traits pertaining to indi-

vidual personalities. Each trait in the Big Five is classified into one of five personality

domains — openness, conscientiousness, extraversion, agreeableness, or neuroticism. For

the data collection task, we selected 18 traits that were either from this list or were

related to items from this list (see Fig. 1). We selected multiple traits from each of the

five domains listed by Gosling et al. (2003). It should be noted that the traits we chose

for this study are different than those used in previous work (e.g., Oosterhof & Todorov,

2008). The traits here were chosen to reflect a wide range of personality traits that fit the-

oretically into the Big Five axes, as well as face perception research that examines trait

inferences. We consider the relationship of these terms to those used in previous work by

constructing the trait space described in Section 4.1.

Fig. 1. List of social traits considered for this study. The original trait list shows the traits rated by participants.

The reduced trait list shows the 11 unique ways participants used traits from this original list. Traits from the

original list whose value correlated strongly with one another (>0.8 Cohen’s d) were averaged together.
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2.4. Procedure for human trait ratings

Participants in this study were asked to decide whether each item in a list of traits

applied to a given face. Every participant viewed 70 face images (19 male, 51 female).

Each face was presented on a computer screen next to a list of 18 social traits. For each

trait, the participant was asked to select whether the trait: (a) applied perfectly, (b)

applied somewhat, or (c) did not apply, to the face being shown. Previous studies exam-

ining social-trait inferences have used scales ranging from two points (Lewenberg et al.,

2016) to nine points (Song et al., 2017), indicating that researchers’ range of the response

options has varied substantially. We used a 3-point scale to limit variance that might

occur based on individual differences in the way participants used the scale. There was

no default selection. Participants were able to advance to the next face only after making

a selection for each trait. Participants were allowed as much time as they needed to rate

each face. Fig. 2 provides an example page from this data collection task.

Trait ratings were collected from 19 and 23 participants per face image. The data com-

prised an n 9 m trait matrix, X, where n represents the number of faces and m represents

the number of traits. Any given cell of the matrix Xi,j contained the mean of participants’

ratings for the jth trait on the ith face. The columns of this trait matrix were then con-

verted into z-scores so that each face was represented by its deviation from the average

ratings across the faces. The social-trait inferences assigned to different images of the

Fig. 2. A screenshot taken from the data collection task completed by participants. Participants viewed 70

(19 males, 51 females) faces in total, organized into sets according to gender. The list of traits was displayed

next to each face. For each trait, participants were asked to select whether the trait “applies perfectly,”

“applies somewhat,” or “does not apply” to the face being viewed.
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same individual were more correlated than the trait inferences assigned to images

showing different identities (same identity, r = .56; different identity, r = .13).

Several trait labels were applied very similarly by participants, indicating that at a higher

level of abstraction, some subsets of traits measure the same underlying variable. The

dimensionality of the trait space was reduced to minimize the effect of these duplicated

traits within the dataset. To do this, traits that correlated highly with one another (Pearson

correlation coefficient, r > .80) were averaged together and treated as a single trait. This

reduced the final number of traits from 18 to 11 by combining (a) talkative and energetic;
(b) warm, sympathetic, softhearted, trusting, helpful, and reliable; and (c) efficient and thor-
ough. The traits talkative and energetic both imply levels of activity and were combined

and relabeled as talkative. The traits warm, sympathetic, soft-hearted, trusting, helpful, and
reliable all imply positive valence and were combined and relabeled as warm. The traits ef-
ficient and thorough both imply capability and were combined and relabeled as efficient.
The social trait space considered in this study was comprised of the 11 traits that remained.

3. Methods for DCNN trait analysis

3.1. DCNN network specification

The neural network features for each face were generated from the DCNN described

in Table 1. This network was trained for face identification and has achieved state-of-the-

art performance on the IJB-A dataset (Klare et al., 2015). Parametric rectified linear units

(PReLU) are used to compute the activation function. The final output layer consists of

512 units. The network was trained on the CASIA Webface database, which consists of

494,414 images depicting 10,575 identities (Yi, Lei, Liao, & Li, 2014).

Table 1

The deep network architecture of the face recognition network described by Sankaranarayanan et al. (2016).

The analyses presented in this study examine the features extracted from the Fc7 layer of this network, for

each of the images in our dataset

Deep Network Architecture

Layer Kernel Size/Stride No. of Parameters

Conv1 11 9 11/4 35 k

Conv2 5 9 5/2 614 k

Conv3 3 9 3/2 885 k

Conv4 3 9 3/2 1.3 M

Conv5 3 9 3/1 885 k

Conv6 3 9 3/1 590 k

Fc6 1,024 9.4 M

Fc7 512 524 k

Fc8 10,575 5.5 M

Softmax loss 19.8 M

8 of 19 C. J. Parde et al. / Cognitive Science 43 (2019)
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3.2. DCNN face representation

To carry out the simulation, the DCNN processed the 280 face images rated by partici-

pants to produce a unique 512-dimensional feature descriptor vector for each image.

These feature descriptors were considered as the face identification network’s representa-

tion of each face.

4. Analysis and results

4.1. Consistency of social-trait space with previous findings

First, we examined the underlying social-trait space from our human-assigned trait rat-

ings to compare with previous findings (Fiske et al., 2006; Oosterhof & Todorov, 2008;

Wiggins et al., 1989). This was important given that the social traits used in this study

differed from those used in previous work. To this end, we submitted our participants’

responses to a principal component analysis (PCA). PCA is a multivariate analysis tech-

nique that uses singular value decomposition to rotate the data and create a new space

defined by orthogonal components that are ordered according to the percentage of vari-

ance they explain. Here, PCA was applied to the human trait inferences. The coordinates

of each trait were plotted along the first two principal components and visualized to

ensure parity with the existing literature (Fig. 3).

The first component produced by a PCA of the human-assigned traits was interpreted

as approachability and separates traits such as talkative, efficient, and warm, from traits

such as anxious, and quiet. The second component was interpreted as dominance and

separates traits such as assertive and impulsive from traits such as shy, quiet, and anxious.
These results are generally consistent with previous studies, which identified two primary

social-trait components corresponding to slight variations on the axes we found: affiliation

and dominance (Wiggins et al., 1989), warmth and competence (Fiske et al., 2006), and

trustworthiness and dominance (Oosterhof & Todorov, 2008).

4.2. Face-identification accuracy

To test the DCNN for identification accuracy, we computed the cosine similarity

between the 512-dimensional feature descriptors for all possible pairs of the 280 face

images in our stimulus set. This resulted in an n 9 n similarity matrix, where n repre-

sents the number of face images. Identification accuracy was analyzed using an ROC

curve to measure the separability between same-identity (match) and different-identity

(non-match) image comparisons. The same-identity distribution contained the similarity

scores for all image pairs in which the same individual was shown in both images. In all

cases, these were two different images of the same person, taken over a span of weeks or

months. The different-identity distribution consisted of all pairs of images depicting two

C. J. Parde et al. / Cognitive Science 43 (2019) 9 of 19
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different individuals. We considered only scores from the upper triangle of the symmetric

similarity matrix.

The ROC showed near-perfect performance on our stimulus set, as measured using the

area under the curve (AUC = 0.995). This illustrates the high quality of the identity infor-

mation in the top-level DCNN features.

4.3. Trait-profile predictions from DCNN face representations

A regression model was trained to predict the human-generated social-trait responses

from the face representation generated by the face-identification DCNN. The trait ratings

were represented in an n 9 m matrix, Y, where each of the n rows represented one of the

280 stimuli and each of the m columns represented one of the 11 traits. The face recogni-

tion features were represented in an n 9 k matrix, X, where each of the n rows again rep-

resented one of the 280 stimuli and each of the k columns represented one of the 512

top-level features. The regression model used to train the mapping from DCNN features

to traits was:

Y ¼ XBþ E

Fig. 3. Principal component analysis of the trait ratings collected from human participants. The 11 traits used

to create our trait space are positioned according to their factor scores on the first (x-axis) and second (y-axis)
components. The correlation between traits can be interpreted according to the angle between them, where a

0° angle implies perfect positive correlation, a 90° angle implies no correlation, and a 180° angle implies

perfect negative correlation.
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where B represents the learned k 9 m weight matrix and E represents the error matrix. This

model was trained using cross validation, wherein the regression model was learned using

all but one of the stimulus images and was tested on the left-out image. In cases where the

identity in the test image also appeared in the training images, all images of that identity

were held out from the training set. This produced an n 9 m output matrix, Y , similar to Y,
but where all trait values were model predictions rather than human responses.

Human-generated trait vectors and computer-predicted trait vectors were compared

using their cosine similarity. To test for statistical significance, we compared the average

cosine similarity between the human- and computer-generated social-trait vectors to a null

hypothesis distribution. This null distribution was created by a permutation test where the

values within each column of the n 9 m trait matrix, Y, were reordered randomly. This

effectively destroyed the relationship between social traits and stimuli, but preserved the

underlying distribution of scores within each trait. The regression model was then re-com-

puted. This was repeated for 1,000 iterations. After each iteration, the average cosine sim-

ilarity between the 280 human-generated trait vectors and the 280 computer-predicted

trait vectors was calculated.

The average cosine similarity between the human trait ratings and the computer-predic-

tions (i.e., true cosines) was compared to the cosine similarities from the null distribution.

The results show that the vectors of social-trait inferences predicted using the actual

model were significantly more similar (p < .001) to the human-generated traits than the

social-trait vectors predicted from the null distribution. There was no overlap between the

mean of the true cosines (M = 0.353) and any of the cosines computed in the null

distribution (M = 0.078). Thus, we conclude that the top-level features produced by the

face-identification network contain information that supports human-generated social-trait

ratings.

Next, we explored the degree to which social-trait information is distributed throughout

the top-level features from the face-identification DCNN. This was tested by eliminating

varying amounts of top-level DCNN features from the space and then re-computing the

regression model. Deleting features containing information critical to social-trait predic-

tion should reduce the cosine similarity between the human-generated trait vectors and

the computer predictions. Alternatively, deleting “noisy” features (i.e., features consisting

of only information extraneous to the social-trait prediction task) should increase the

accuracy of the trait predictions.

The top-level features from the DCNN were ordered according to their contribution to

the regression model. The contribution of each feature was assessed using its regression

weights and was measured to be the sum of absolute values across the rows in the k
(number of features) by m (number of traits) weight matrix. Rows with the lowest sums

contributed the least to the regression model and rows with the highest sums contributed

the most. Beginning with the lowest 5%, an increasing number of features were removed

and the regression models were recomputed. This was repeated until the prediction accu-

racy, indicated by cosine similarity, began to decrease. A decrease in prediction accuracy

occurred after removing 27.5% of the features. The remaining 72.5% of features represent

the optimal set of predictors. The average cosine similarity between human-generated trait
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vectors from this optimized regression model was significantly higher (M = 0.533,

p < .001) than the average cosine similarities computed using the null distribution

(M = 0.078). There was no overlap between the average of the true cosines and the cosi-

nes computed in the null distribution. These results show that social trait information is

not evenly distributed throughout the top-level feature space learned by the face-identifi-

cation DCNN. The importance of individual top-level DCNN features for either identifi-

cation or for predicting social-trait inferences should be explored in-depth in future work.

Here, we report the finding that accurate trait-inference prediction requires just a subset

of the features from the overall top-level DCNN feature space.

4.4. Predicting individual traits from face representations

The previous regression experiment established that a profile of social-trait information

is represented in the top-level features of the face-identification DCNN. We now address

the extent to which individual social traits can be predicted in isolation. Regression-model

predictions were computed for each of the 11 individual traits. The resulting n 9 1
dimensional trait vectors were compared to the corresponding columns from the original

n 9 m trait matrix using the coefficient of determination (R2). This provides a direct

measure of the similarity between each predicted trait and its human-generated counter-

part.

The coefficients of determination for predicting each trait individually are presented in

Fig. 4. In Fig. 5, we plot the prediction accuracy for each trait contrasted against a null

distribution. This figure shows that all of the social traits considered in this study were

predicted at levels significantly above chance. The best-predicted traits here were

Fig. 4. Coefficients of determination (R2) for each of the traits predicted by the top-level DCNN features.

Traits are listed along the y-axis, and the coefficient of determination between predicted trait ratings and

human-generated trait ratings are listed along the x-axis. The similarity between human-assigned traits and

computer predictions was assessed both in terms of R2 as well as prediction error (Fig. 5).
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impulsive, anxious, and warm. These social traits were predicted at levels comparable to

the subjective trait predictions reported for the three traits examined in McCurrie et al.

(2017). In the present case, however, predictions were made from a network trained for

face identification, whereas in McCurrie et al. (2017), the network was trained explicitly

for trait prediction.

5. Discussion

Human faces provide a rich source of information that can be used to identify individ-

uals, as well as to form first impressions of strangers. Both topics have received consider-

able attention in the literature, but they have never been investigated simultaneously. In

this study, we examined the co-existence of identity and trait information in faces. The

Fig. 5. Trait prediction error (difference from human ratings) when using the actual model (red line) versus

a null distribution (gray). The dashed blue line represents a Bonferroni-corrected alpha level of a = 0.00225

(0.025/11) on the null distribution. All traits were predicted with significantly less error when using the actual

model than when using the null distribution.
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main findings are as follows. First, we demonstrate that information related to social and

personality traits is retained in the top-level features of a DCNN trained for face identifi-

cation. This finding complements previous work illustrating that DCNNs retain specific

information about images that is not directly relevant for object/face recognition (Hong,

Yamins, Majaj, & Dicarlo, 2016; Parde et al., 2017). Second, we show that DCNN face

“identity” representations predict human-generated social-trait inferences, both at the indi-

vidual-trait level and at the level of full trait profiles. Third, we show that the DCNN

used in this study identifies faces with high accuracy, allowing us to consider the reten-

tion of social trait information in the context of a high-performing identification system.

Fourth, we verify that the particular social trait ratings we collected in this study, which

differ somewhat from previous studies, produce a social-trait space similar to those

reported in previous work (Oosterhof & Todorov, 2008; Walker & Vetter, 2009).

To understand the implications of these findings, it is useful to return to what we

know about the nature of the physical information that supports trait inferences and to

expand our discussion beyond simple face structure. The literature offers evidence that

three sources of information contribute to social-trait inferences (Sutherland et al., 2013):

face structure (Oosterhof & Todorov, 2008; Walker & Vetter, 2009), emotional facial

expressions (Said et al., 2009; Sutherland et al., 2013), and image characteristics

(Todorov & Porter, 2014). As noted previously, evidence for the role of face structure in

trait inferences comes from findings indicating that the manipulation of face structure,

using computer graphics models, affects human trait judgments in predictable ways

(Oosterhof & Todorov, 2008; Walker & Vetter, 2009). The fact that face structure con-

tributes substantially to both face identity and trait inferences is perhaps not surprising,

but makes it clear that information relevant for one of these tasks may also be relevant

for the other.

In addition to face structure, both posed facial expressions and expressions that are

derived from the structure of neutral faces have been shown to influence trait ratings

(Oosterhof & Todorov, 2008). For example, Montepare and Dobish (2003) showed that

deliberate changes in the emotional expression of a face influence social trait ratings.

These differences in the perception of social traits reflect the structural resemblance of a

face to a specific emotion (Said et al., 2009). Further, a recent study by Todorov and

Porter (2014) showed that image characteristics, which include photometric variables

such as illumination and image quality, are linked to social-trait perception. It has also

been shown that DCNNs trained for face identification retain information pertaining to

these image characteristics (Parde et al., 2017). Together, these studies provide further

evidence that identity and social traits can coexist in a unitary representation. In this

study, face emotion and image characteristics were controlled to reduce the noise associ-

ated with social-trait judgments. Because of this, the present results may underestimate

the extent to which it is possible to predict social-trait inferences from more naturalistic

stimuli (see Song et al., 2017 for an approach that allows face expression to support trait

classification).

Returning to the question of how trait and identity information are related, it is impor-

tant to remember that face structure is relevant for face identification, but that facial
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expression and image characteristics are not. The finding that facial expression and image

characteristics contribute to trait inferences makes it clear that first impressions are based

not only on the face itself, but also on the specific circumstances in which a face is

encountered. Although the behavioral and neural literatures reflect a conceptual division

between social-trait and identity processing (Haxby, Hoffman, & Gobbini, 2000),

advances in modeling face identification with DCNNs demonstrate that this division is

not computationally necessary to account for the creation of a unitary face representation

that can support both identity and trait perception.

DCNNs are designed to model the computational processes seen in the primate ventral

visual stream (Fukushima, 1988; Krizhevsky et al., 2012). There are some questions con-

cerning the validity of the claim that these networks are good models of ventral stream

visual processing, given that their architectures are not well-suited for complex, sequen-

tial behavior (Edelman, 2016). However, research has shown that the response properties

of units in the intermediate layers of a DCNN predict the response properties of neurons

in primate visual area V4. Moreover, units in the top level of the DCNN predict the

responses of neurons in the inferotemporal (IT) cortex (Yamins & DiCarlo, 2016; Yamins

et al., 2014). Although interpreting the similarities between the ventral visual stream and

DCNNs requires caution, the finding that these networks can accommodate both identity

and social-trait information is consistent with recent evidence suggesting specific modifi-

cations to the distributed model of face processing (Haxby et al., 2000).

The distributed model posits a functional division of identity and social information

from faces, whereby invariant identity information from faces (e.g., face structure) is

processed in ventral stream face areas, and social (e.g., changeable aspects, including

emotion, gaze, and head rotation) information is processed in the dorsal stream face areas

(posterior Superior Temporal Sulcus). Although this theory is consistent with much exist-

ing data on the neural processing of faces (Allison, Puce, & McCarthy, 2000; Gobbini &

Haxby, 2007; Puce, Allison, Bentin, Gore, & McCarthy, 1998), recent work suggests that

the ventral pathway is also sensitive to some changeable information from faces. For

example, Duchaine and Yovel (2015) suggest that the ventral temporal cortex processes

emotional expression. More concretely, it has been shown that the fusiform face area

(FFA) responds to faces regardless of whether people attend to the expression of the faces

they view (Ganel, Valyear, Goshen-Gottstein, & Goodale, 2005). In addition, the intensity

of observed facial expressions modulates neural responses in the FFA (Surguladze et al.,

2003).

Further work is required to determine whether these responses arise purely from faces,

or from faces and bodies in motion. However, combined with the present results, these

neural findings advance support of the distributed model modification suggested by Duch-

aine and Yovel (2015). Specifically, this modification posits that ventral temporal repre-

sentations support both identity and social judgments about faces. This modification does

not alter the distributed model’s original hypothesis that social information from facial

motion is processed in the dorsal stream (pSTS). Rather, it suggests that both ventral and

dorsal stream face areas can play a role in the social processing of faces. In considering

DCNN properties in this context, it is worth noting that there is now strong evidence that
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DCNNs retain specific information about face images, in addition to face categories (e.g.,

identity). That DCNNs are able to generalize well is paradoxical, given their enormous

degrees of freedom. The topic of why DCNNs generalize is discussed in depth in

O’Toole, Castillo, Parde, Hill, and Chellappa (2018) and C. Zhang, Bengio, Hardt, Recht,

and Vinyals (2017). Presently, the surprising generalizability of DCNNs implies that these

networks have the potential to model trait inferences based on expression and image-char-

acteristics in addition to facial structure (cf., O’Toole et al., 2018; Parde et al., 2017).

Future work should consider ways to dissect the sources of face-identity and face-image

information that allow DCNNs to predict social trait inferences (see methods proposed by

Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015).

In conclusion, we present the novel finding that social-trait information and identity

information are not independent from one another. Understanding how social traits and

identity are linked can provide clues to the structure of high-level visual information pro-

cessing in general face perception. The simple and direct linear classification methods

used in this study underscore the fact that trait information is readily accessible within

the representations produced by DCNNs trained for face identification. The presence of

this trait information may constrain theories of how neural codes for faces can serve mul-

tiple face processing tasks.
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