
Review
Face Space Representations in Deep
Convolutional Neural Networks
Alice J. O’Toole,1,* Carlos D. Castillo,2 Connor J. Parde,1 Matthew Q. Hill,1 and Rama Chellappa2
Highlights
Deep convolutional neural networks
(DCNNs) are the first class of algorithm
to achieve generalized face recognition
across viewpoint, illumination, expres-
sion, and appearance.

Face space illustrates the progress of
automated face recognition. Image-
based models do not generalize
across images or identity. Active
appearance models represent identity,
but do not model image generalization.
DCNNs create a unitary space that
houses both facial identity and face
images.

Face representations in DCNNs are
compact, with feature units that are
not tuned to face or image properties
(e.g., viewpoint) in any commonly
understood way.

DCNN face spaces retain highly
detailed information about face
images, in addition to face identities.

Semantic interpretation of face repre-
sentations in DCNN follows sparse tra-
jectories in the space, rather than
being interpretable by feature unit
activation.
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Inspired by the primate visual system, deep convolutional neural networks
(DCNNs) have made impressive progress on the complex problem of recog-
nizing faces across variations of viewpoint, illumination, expression, and
appearance. This generalized face recognition is a hallmark of human recogni-
tion for familiar faces. Despite the computational advances, the visual nature of
the face code that emerges in DCNNs is poorly understood. We review what is
known about these codes, using the long-standing metaphor of a ‘face space’
to ground them in the broader context of previous-generation face recognition
algorithms. We show that DCNN face representations are a fundamentally new
class of visual representation that allows for, but does not assure, generalized
face recognition.

Face Recognition in Deep Convolutional Neural Networks
Generalized face recognition is accomplished in the human brain by large-scale networks of
neurons. Deep convolutional neural networks (DCNNs) accomplish this task in an analogous,
albeit artificial, way [1–9]. These feed-forward neural networks (see Glossary) are con-
structed of multiple layers of simulated neurons. As with the human visual system, DCNNs
begin with raw images, which they recode across multiple ‘neural layers’ that alternately
convolve and pool input. Although the calculations executed by the simulated neurons in
the network are simple (convolutions and pooling), enormous numbers of computations are
used to convert an image of a face into a representation that supports identification. Across
early layers of these networks, the number of coding parameters expands exponentially
reaching into 10s of millions of parameters and beyond. The highly compact face representa-
tion that emerges at the top level of the DCNN consists of just a few hundred features and is
robust across a wide range of image variation (e.g., pose, illumination, and expression [10,11]).

To be successful as a face recognition system, a DCNN must be trained with multiple variable
images of a very large number of identities. This is now feasible due to the large data sets of
labeled training data (faces and identities) on the Web [1,6,12,13] (Box 1). Despite the rapid and
sustained progress of DCNNs, the ‘visual nature’ of the face representation that emerges at the
top level of a DCNN is not understood, nor is it known how this representation operates
effectively across changes in image parameters and facial appearance [14,15]. We use the term
‘visual nature’ to refer to the specific visual information that is encoded neurally (e.g., structure,
features, color) and the form the information takes in the representation (e.g., viewer centered,
object centered, hybrid code).

In this review, we begin with the framework of a face space, which has grounded computa-
tional and psychological approaches to face recognition for decades. Next, we trace the
evolution of face representations in these models and discuss the strengths and limitations of
each. We continue with a look at human versus machine comparisons over the past decade.
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Glossary
Active appearance model (AAM):
a computational instantiation of a
face space that uses PCA to analyze
faces coded in terms of their
deformation in shape and reflectance
from the average face.
Convolution and pooling: a
convolution takes a linear
combination of neighboring pixels
according to the weights expressed
in a filter. Pooling combines the
output of multiple convolutions
through a simple operation, usually a
maximum or an average. Neurons in
the primate visual system implement
a computation analogous to
convolution. They do this by
combining dendritic inputs and
passing the sum of these inputs
through a threshold function. If the
sum of the weighted inputs exceeds
the threshold, the neuron produces
an action potential.
DCNN’s face representation:
defined as the pattern of activation
produced by processing a face
image through a trained DCNN at
the top layer, just prior to the final
layer that reads out the identification
decision. It is a highly compact
These provide insight into the face space representations created by computational algorithms,
and consequently help us to understand their advantages and limitations as models of human
face processing. Finally, we review what is known about the nature of the visual representation
that emerges at the top level of DCNNs (see Figure 1, Key Figure, for an overview).

It becomes clear that DCNNs address critical shortcomings of previous models to produce a
representation that is powerful and fundamentally different from existing hypotheses about face
representations. The computational advances made by DCNNs offer insight into long-standing
questions about how the visual system can turn retinotopic codes into representations that
accomplish generalized face recognition. DCNNs also offer a novel model for understanding
how the quality of a face representation evolves through personal experience.

Face Space Model of Human Face Recognition
Psychologists have relied on the idea of a face space as a theoretical metaphor for human face
representation since it was introduced in the early nineties [16]. In its first abstract form, face
representations were considered as points in a multidimensional face space, with the axes of
the space representing facial features, and the average or prototype face at the center of the
space. The distance between two faces in the space indicated the perceived similarity between
the faces. This simple model accounted for interesting phenomena in human face processing,
including face typicality [17] and other-race effects [18]. In the first computational instantiation of
a face space, principal component analysis (PCA) was applied to scaled and aligned face
images to produce an image-based face space. These models appeared simultaneously in
psychology [19,20] and computer vision [21,22]. In psychology, image-based face spaces
provided a testable instantiation of the effects predicted by the abstract face space model [16].
In computer vision, despite the strong limitation of image-based PCA to operate only within a
representation of the image in the
form of a vector of a few hundred or
a few thousand real numbers.
Face knowledge history: defined
as the state of the DCNN parameters
following the first stage of training. In
this training, the DCNN parameters
are set using a large number of
images from a large number of
faces. The face images in the training
set and their corresponding identity
labels are used to teach DCNNs to
map multiple variable images of
faces onto single identities.
Face learning history: defined by
the state of the DCNN parameters
following the second stage of
training. In this training, the network
parameters are tuned with the goal
of optimizing the performance of the
network to operate well on the data
set(s) that will be used to test the
system for face identification. The
tuning mostly alters parameters in
the top layers (high-level visual
processing), leaving the lower layer
(early visual processing) parameters
largely stable.
Face space: refers to a metaphorical
representation of how people perceive
faces. The axes of the space represent

Box 1. Deep Convolutional Neural Networks for Face Recognition

Convolutional neural networks have been around for decades [59]. The neocognitron model from the 1980s [60,61] was
inspired by neurons in cat visual cortex [62] and worked with cascaded layers of simulated neurons with diverse
receptive fields. Advances in training methods such as backpropagation in the mid-80s enabled error correction to
propagate across multiple layers of neurons [63]. Using architectures that resemble today’s DCNNs, backpropagation
was applied to handwritten digit recognition not long after backpropagation was introduced [63]. The main advance of
DCNNs for faces is their ability to operate effectively on uncontrolled images captured ‘in the wild’ (see Figure I).

Why then, are DCNNs from the past few years so much more powerful than earlier DCNNs? It is now clear that speed
and scale matter. High-end computational graphical processing units, the preferred computational engine of choice for
DCNNs, are 30–50 thousand times faster than computers in the 80s. Thus, it is now feasible to execute large numbers of
convolutions and to train networks with data sets that are orders of magnitude larger than those used previously. For
deep networks, which have very large numbers of parameters, large data sets are not a luxury, but a necessity for the
DCNN to converge and generalize well. Data sets on this scale were unimaginable even a decade ago, but are now
freely available from the Web. Table I shows an overview of the data set sizes and parameter numbers for four important
DCNN-based face recognition systems.

In addition to scale and speed, there have also been theoretical breakthroughs that alter the flow of information in
DCNNs and change the way the internal representations are tuned to learning sets. New nonlinear activation functions
(e.g., ReLU [64]) skip connections and allow for deeper networks. ‘Loss functions’ have also improved with the
introduction of softmax [65] and triplet loss [66]. These functions map the weights of the network and an input into a real
value that represents the loss incurred when comparing the prediction to the ground truth.

Based on their performance, DCNNs are the top choice for face recognition applications. The fast pace of progress,
however, has outpaced researchers’ understanding of how the representations in DCNNs relate to those created by the
visual system. When tens of millions of computations stand between a single input face image and the representation
produced by these networks, this is perhaps not surprising.
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the features with which faces are
encoded (e.g., nose size). Each face
has a value on each feature axis. The
set of values specify a face’s
coordinates (position) in the space. The
similarity between faces is modeled as
the distance between them.
Feed-forward neural network:
neural network that moves input in
only one direction, that is, forward
through one or more layers of
processing nodes without looping or
cycling backward through previous
layers.
Image-based face space: a
computational instantiation of the
face space metaphor that is created
by submitting images of a set of
faces to a PCA. The axes of the
space are the extracted principal
components or eigenvectors. This
model is sometimes referred to as
eigenfaces [22].
Loss function (cost function):
using the current weights of the
network and a given input, the
network will make an output
prediction. A loss function generates
a real number that represents the
loss (or cost) incurred by making this
prediction. Training a network is the
process of adjusting the weights to
minimize the loss over the entire
training set.
Opponent code: refers to a
representation whereby features
indicate an opposition along a
continuum that is centered at an
average or stable point.
Personal face learning history:
defined as the knowledge the face
recognition system has of the
identities to be tested. The
implementation of this training varies
across DCNNs, but is commonly
applied to a network that takes the
final layer of the DCNN as input to a
simple network that learns to map a
new set of face images onto their
respective face labels (e.g., unique
identity codes). These are the
identities that the network learns as
individuals.
t-SNE Visualization: t-SNE,
(abbreviation for t-distributed
stochastic neighbor embedding), is a
nonlinear method of dimensionality
reduction that uses gradient descent
to preserve the distance between
each point in a high-dimensional
space while reducing the number of
dimensions.

Figure I. Highly Variable Images Used to Test DCNNs. Example of the kinds of images that DCNNs are able to
recognize from labeled faces in the wild [80]. This data set is a common benchmark for DCNN face recognition systems.

Table I. Four Important DCNN Face Recognition Systems

System Architecture Loss function Training set size

Deep Face [5]
(Facebook, 2013)

Five convolutional layers, two fully
connected layers

softmax 4 million faces
4000 identities

VGG face [13] (2015) Thirteen convolutional layers, two fully
connected layers

softmax 2.6 million faces
2600 identities

FaceNet [6]
(Google, 2015)

One convolution and 11 inceptions
(modules associating convolutional layers
and max pooling layers). Sixty-seven
convolution layers and two fully
connected layers

softmax and triplet loss 200 million faces
8 million identities

L2 softmax [9] (2017) Uses ResNet101 has 100 convolutional
layers that skip connections and two fully
connected layers at the top

softmax and triplet loss 3.7 million faces
58 207 identities
single (frontal) viewpoint, this model provided the computational engine for the first generation
of commercially viable face recognition systems [22].

By the mid-nineties, the shortcomings of image-based analysis of faces were apparent. Robust
face recognition is impossible with image-based PCA. The development of 2D and 3D
796 Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9



Key Figure

Evolution of Face Space in Computational/Neural Models
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morphable models that operate independently on face shape (configuration) and reflectance
(albedo) information in a face was an important step forward [10,23–25]. Morphable models,
referred to in the computer science literature as active appearance models (AAMs) of facial
synthesis [23], had a strong impact on computer graphics. The 3D morphable model [25]
contains complete 3D surface and 2D reflectance information about faces and supports
reconstruction of a 3D head from a single, high-quality frontal image. This enables synthesis
of heads viewed from arbitrary viewpoints and under arbitrary illumination conditions. AAMs,
however, model the appearance of a face and were never intended as face recognition
systems. In addition, the impracticality of 3D data capture limited the use of these models
in face recognition systems.

Despite limited value as a face recognition system, morphable models had a profound
impact on psychological theory. A primary accomplishment of these models was that they
solved the correspondence problem between any arbitrary face/head and the average face/
head, with high-density point-by-point correspondence [25]. This yielded a novel face
space that was completely ‘morphable’. Any face could be morphed continuously into
any other face across a trajectory in high-dimensional space. Using the average face as a
reference, these models represent shape and reflectance variability across a population of
faces, with each face coded as the deformation of its shape (dx, dy, dz) and reflectance (dr,
dg, db) from the average.

Applied to this deformable model of shape and reflectance, PCA produces a face space with
properties that are quite interesting to psychologists. First, individual identities can be isolated in
the face space as trajectories that begin at the origin of the space, pass through anticaricatures
(less distinctive versions of a face), and terminate at the veridical face. Continuing this identity
trajectory [11] beyond the original face produces an exaggerated (caricatured) version of a face.
Second, the model accounted for high-level face adaptation effects, whereby adaptation to
distorted faces (excessively wide or thin) produced an after-effect when viewing a subsequently
presented normal face [26]. After-effects were extended to face and antiface pairs [27], as well
as to race, gender, and facial expression [28]. Adaptation has proven relevant for understand-
ing the neural processing of faces, both in fMRI [29] and in single-unit neurophysiology in
primates [30].

Next, we explain why these previous models now fail to make progress on understanding
human face processing.

Models Fail to Account for Recent Psychological Findings
There are strong differences in the robustness of human face recognition for familiar versus
unfamiliar faces (for a review, see [31]). These differences make it clear that there are two fatal
problems in using the morphable model as a psychological model of face recognition. First, the
Figure 1. (A) Schematic shows the progression of visual processing in the ventral stream from an image-based representation in early visual areas [lateral geniculate
nucleus (LGN), V1, V2, V4] toward a categorical representation in the ventral temporal cortex (VTC)/inferior temporal (IT) cortex. Arrows point to the evolution of
computational hypotheses about the nature of neural/psychological representations of faces. (B) Early image-based principal component analysis (PCA) models
analyze pixel-based images. They are a good fit for early visual processing, but fail to generalize across variable images to categorical representations of identity. (C)
Morphable models represent the deformation of face shape and pigmentation with respect to an average or prototype face, but do not model the variability of real-world
images. They are powerful face synthesis tools, but are not useful for recognition of faces in natural viewing conditions. (D) Deep convolutional neural network (DCNN)
models emulate the neural processing of the primate visual system and produce a face space that retains information about the categorical identity of faces and image
properties with other categorical relevance. DCNN receptive fields across these layers for object recognition have been visualized in previous work [78]. PCA, principal
component analysis.
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model is based completely on information about the face itself (shape, reflectance). Modeled in
this space, face recognition success/failure in any given case must be accounted for only in
terms of the properties of a face in relation to other faces (similarity/confusability). There is no
provision in this model for understanding the role of imaging conditions in recognition, because
there is no way to model photometric effects (illumination, pose) in the context of the similarity
space of faces.

This brings us to the second problem. There is no provision in these models for allowing some
faces (familiar faces) to be better-represented than other faces (unfamiliar faces). Recent
landmark papers in the psychology literature [31,32] make it clear that progress in understand-
ing human face recognition depends on an ability to understand why and how familiar faces are
recognized more robustly than unfamiliar faces. The severity of the challenge this problem
poses to understanding human face recognition is illustrated in Figure 2A from [32]. Participants
were asked to indicate the number of identities pictured among 40 images. On average, people
responded that there were 7.5 identities. In fact, there are only two identities! With similarly
challenging images of two Swedish celebrities, Swedish participants made no errors. On these
same images, British participants again responded that there were more than seven identities
present.

This experiment illustrates the difference between the human ability to ‘tell so many similar
people apart’ and the human ability to ‘tell (a smaller number of) people together’. The former is
long cited by psychologists to underlie human expertise for face recognition. The latter is a more
recently appreciated human expertise that is limited to faces of the people we know well. In
Figure 2A, we fail to see the multiple pictures of the two people together, because they are
unfamiliar to us. If we knew them, it would be a simple task. This ability represents human face
recognition at its best and is not a part of current models of human face recognition.

Next, we trace the progress of machine-based face recognition algorithms as models of human
face processing. We approach this question by using human–machine performance compar-
isons as a guide.

Machine Face Recognition Approaches Human Performance: (2005–2013)
Beginning in 2005, computer-based face recognition systems began to close the gap between
human and machine performance. This progress can be tracked by examining the difficulty of
the problems on which machine performance was tested. Over the past two decades, large-
scale evaluations of state-of-the-art face recognition algorithms, open to international com-
petitors from academics and industry, have provided a look at the progression of task difficulty
expected at any given time by a state-of-the-art face recognition algorithm [33–36]. These tests
were augmented with systematic comparisons between human and algorithm performance
beginning in 2005 (cf., for a review [37]).

In 2007, the state of the art for machines was to determine whether pairs of frontal images
showed the same identity or different identities, when one image was taken under controlled
illumination (passport style) and the second image taken under uncontrolled indoor illumination.
At that time, the best three algorithms surpassed humans on face pairs prescreened to be
challenging for the machines [38]. By 2012, the state of the art for machine recognition
progressed to matching pairs of images with unconstrained variation in illumination (indoor
and outdoor) and expression. Figure 2B shows six images of the same person, arranged (by
column) into three pairs, from an international test of algorithms in [39]. Image pairs were divided
into easy, more challenging, and extremely challenging categories, based on the performance
Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9 799



(A)

(B)

Figure 2. Perceiving Identity from Highly Variable Images. (A) How many different identities are pictured among
these 40 images? People unfamiliar with the identities pictured guess that there are between seven and eight identities,
when in fact there are only two. This figure, from [32], provides compelling evidence that familiarity with an individual is an
important prerequisite for generalized face recognition. (B) There are six images of the same person here, grouped into
three pairs (by column). For computational models of face recognition prior to 2013, the leftmost pair was considered
‘easy’, the middle pair was considered ‘challenging’, and the rightmost pair was considered ‘extremely challenging’ [39]. In
2012, machines were more accurate than humans at matching the identity of the easy and challenging pairs, but humans
and machines were equally accurate on the extremely challenging pairs.
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of a baseline algorithm. Human–machine comparisons for matching the identity of faces across
pairs of images showed that machines were far better than humans on the easy and moderately
challenging pairs [40]. On the extremely challenging pairs, machines and humans were equally
matched. In no case were humans superior to the best algorithms.

In summary, as of 2012, the best face recognition algorithms performed as well as, or better
than, humans – with two caveats. First, the human perceivers tested were not familiar with the
people in the images. Second, state-of-the-art algorithms, up to 2012, worked only on frontal
images with no ability to recognize people over changes in viewpoint. Thus, even as recently as
2012–2013, a viewpoint change of more than a few degrees of rotation was beyond the
capability of the best algorithms.

Deep Networks and Generalized Face Recognition (2014–Present)
DCNNs trained for face recognition first appeared in 2014 and have moved the state of the art
to recognition of uncontrolled images captured ‘in the wild’ (e.g., [3,5–8,13,41]). See Box 1 for
an example of the kinds of images that DCNNs are able to recognize. Performance on data sets
such as Labeled Faces in the Wild [42,43], IJB-A [44], and Mega-Face [45] offers evidence that
face recognition by machines is beginning to attack the problem of generalized face recogni-
tion, including the ability to ‘tell faces together’ across widely variable changes in image and
appearance.

One reason for the progress of DCNNs is that they are trained with millions of ‘diverse’ images
of thousands of individuals ‘in the wild’. In other words, the algorithm learns an identity from
exposure to many images. Ideally, the diversity of images for each identity should span multiple
pose, illumination, and expression conditions. It should also span appearance variables (e.g.,
age, make-up, hair styles, facial hair, glasses). To produce a face recognition system that
generalizes well, the availability of this kind of ‘high-quality’ training data is necessary. It is worth
noting that data quality, for DCNNs, is usually thought to reference the number and diversity of
training exemplars and the accuracy of the training labels. It is not generally considered in terms
of traditional image quality metrics (high resolution, optimal illumination, taken from a frontal
viewpoint). Accurate labels are also critical and are provided by online crowd-sourcing, or in the
case of commercial systems (e.g., Facebook), by labeled face-identity pairs available in social
media.

In the next section, focusing on how DCNNs are trained, we show how these networks have the
potential to model the evolution of an individual face’s representation as it becomes familiar to
the network.

From Unfamiliar to Familiar in a DCNN
Each of the steps needed to implement a DCNN has an analog in human face recognition. The
first step is to train the DCNN with millions of images of thousands of people. This results in a
network that converts a face image into a compact feature code, with the DCNN pushing the
representation through a bottleneck of units in the penultimate layer of the network. In other
words, the compact feature code emerges one layer down from the top layer of the network.
The top layer contains the ‘training identity’ units of the network during its initial training. We can
think of this penultimate layer, therefore, as the neural activation profile for a ‘generic’ incoming
face image that was not part of the training set. Although the system is trained initially to identify
the people in the training data set from a wide variety of images, the final identification layer (i.e.,
the ‘training identity’ units one layer beyond the compact feature layer) is simply removed at the
end of the training. This initial training step gives the system a general knowledge of how facial
Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9 801



appearance changes with image variation and can be thought of as the system’s face
knowledge history. Evidence for the ‘general’ nature of this initial training is that some
DCNNs for face recognition are actually built on top of networks that have been trained for
object recognition (see, e.g., [46]; for object networks, see, e.g., [47]). This stage of training may
function primarily to learn general visual transformations across viewpoint and illumination.
These transformations are applicable to both objects and faces.

Second, DCNNs are commonly fine-tuned with data (faces and labels) that are statistically
similar to the images that one expects to encounter in the intended application. Often, these
images are from the database for which the application is intended, but are of different people
than those to be recognized in the application. In this second training, the learning rate is set to
have low impact on the weights in lower layers of the network and higher impact on the weights
in layers closer to the top of the network. The rationale is that processing in lower layers (closer
to the ‘retinotopic’ image) should remain relatively stable across most/all sets of faces.
Processing closer to the top of the network, however, should be more tuned to subsets of
image types that the system expects to encounter in the application. This produces a face
learning history with emergent higher-level features fine-tuned to the statistical structure of
the training examples. This training might be used, for example, to model the quality of
representations produced for different races of faces as a function of diversity in the population.

Once this second training is complete, the top layer of the network is again removed. In a final
training, the faces that must be recognized as individuals are learned, but in a way that does not
alter the weights within the DCNN itself. Instead, this last stage of training usually consists of
training a simple one-layer network that maps the top-layer DCNN representations onto an
identity label. This training can rely on all available ‘training images’ of each person to be learned
and can be thought of as a personal face learning history.

How well a person is learned depends on the quality of the representation possible, given the
face knowledge, the face history, and the quality of training data for the individual person at the
final training phase. Some faces (familiar) will be better represented than others. Here, we refer
to the code produced at the top layer of the network as the DCNN’s face representation.

Next, we review what is known about the face representations that emerge from DCNN
processing.

Probing Face Representations in DCNNs
What is in a DCNN feature? If the goal is to create a generalized representation of facial identity
from image-based input, one computational strategy is to eliminate or filter out the nuisance
information from an image to obtain a purely categorical code (identity). However, top-layer
DCNN representations, which support face identification across image variation, retain sur-
prisingly accurate information about the original input image [14] (see also [15] for a similar result
in object recognition DCNNs). Using top-layer features from two recent face recognition
networks [8,48], it is possible to predict the view (yaw, �90�; pitch, on-center, or off-center),
and media type (video frame or still image) of the actual image that was input to the network
[14]. Specifically, a classifier network trained to predict face yaw from the DCNN face repre-
sentation was accurate to within 8.6�. Pitch was predicted with an accuracy of 71.5% and
media type was predicted with 93.3% accuracy. Electrophysiological recordings in the inferior
temporal (IT) cortex of macaque monkeys [15] likewise show explicit coding of image properties
(position, size, pose) for objects (Box 2). This is a surprising result in neurophysiology that is
entirely consistent with the finding that yaw, pitch, and media type can be predicted from the
802 Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9



Box 2. Neural Perspectives: Going up!

There is broad consensus among visual neuroscientists that the computational end goal of early visual processing (V1,
V2, V3, V4) is to create object representations that generalize across exemplars of a category and variable image
parameters [15,67–69]. Representations must also retain information to distinguish among exemplars [70,71]. There is
overwhelming evidence from functional neuroimaging and primate electrophysiology that face/object representations
meet these criteria in the ventral temporal cortex (VTC), but fail to meet them at earlier stages of processing [71]. Thus, it
may seem puzzling that category-based representations in the VTC retain low-level visual features with high fidelity.
Category-orthogonal object properties (e.g., viewpoint), however, are represented more explicitly in the IT cortex of
macaques than in earlier ventral visual stream areas [15]. If the goal of neural computation is the elimination of image-
based information to arrive at a category-based representation, these findings force us to consider representations in
the VTC in a different light.

Putting together the perspective of neural computation with the strategies used by deep learning, there is a way to
resolve this paradox by redefining the computational goals of the visual system. In a paper that preceded modern
DCNNs [70], the authors note that each layer along the progression of ventral system areas produces a high-
dimensional representation space. In image-based spaces in early visual areas, the categorical structure of face/object
identity is hopelessly confounded with image parameters [70]. Restricting our attention to faces, in simple terms, the
organization (similarity structure) of faces in the face space is altered from one layer to the next. The goal of the
progressive neural recoding, according to [70], is not to eliminate image parameters along the upward stream, but to
refine the representational space to ‘untangle’ categories inherent in the input (e.g., identities, viewpoints, image
conditions). A successful high-dimensional representation supports multiple subspace projections that allow for easy
(linear) readout of face identities and other categorical data in the input.

The implications of this change in perspective are profound. Probing neural receptive fields or even population receptive
fields in the VTC/IT may offer little or no insight into the nature of the visual code at work in the high-dimensional space
defined by neurons. Instead, we need to understand how combinations of neuronal responses support projections that
untangle all/much of the categorical information in the incoming image.
high-level face representations generated by DCNNs [14]. The result is also consistent with
functional neuroimaging studies that find representations in human face-selective regions
tuned to viewpoint (e.g., [49–51]) and other low-level image properties such as illumination
[52], size [53], and position [54].

Focusing on single feature units at the top layer of a DCNN, we see clear differences in the
extent to which DCNN codes for the individuals learned by the network are robust against
viewpoint change [14]. Receptive field analysis of these units showed that view invariance was a
property, not of the individual feature units in the representation, but of individual identities.
Specifically, in a recent paper [14], an index of viewpoint invariance for feature units in the top
level of a face recognition DCNN was developed. This index measured whether individual
feature values for each identity changed systematically with viewpoint (frontal vs. profile). For
some identities, most of the feature values differed systematically between frontal and profile
views. However, for other identities, most feature values did not diverge for frontal and profile
views.

Why would some faces be coded robustly and others in a view-dependent way? One possibility
is that some/all physical characteristics of individual faces are more/less diagnostic across
viewpoint (e.g., baldness, facial hair). Supporting this idea, among 25 000 test faces, Bono,
with his ubiquitous blue-tinted spectacles, was one of the most robustly coded faces [14].
Another possibility is that the diversity of the available training images for a person modulates
the stability of individual feature values. These two hypotheses are not mutually exclusive.
DCNN face recognition algorithms, however, are usually trained and tested with unconstrained
data sets. Consequently, there is rarely enough control on the number/diversity of images used
to represent individual identities to evaluate the relative importance of these two factors in
making a robust code for an individual face.
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Notwithstanding, the finding that individual features in the top-level representation can operate
both with and without tolerance for view change, depending on the data quality and personal
experience, is striking. This new finding suggests a visual code wherein the individual features
are not tuned to viewpoint in any commonly understood way (Box 2).

Next, we consider the global organization of the DCNN face space. This gives insight into the
interpretation of the neural response properties of single feature units.

DCNN Face Space Makes Image Quality Explicit
The face space that emerges from the top-level face representations in DCNNs shows a
remarkable structure, with low-quality images (blurred, obscured, etc.) near the center of the
space and progressively higher-quality images located more peripherally (see Figure 3, [14]).
The figure also shows that face images located more peripherally tend to be frontal views,
whereas off-center views are closer to the center of the space.

Figure 3 shows that the structure of DCNN face space differs from the prototype-centered
spaces seen in image-based and morphable models. Instead, the center of the DCNN space
acts as a kind of ‘garbage dump’ for poor-quality and unusable images. From a coding
perspective, this suggests an opponent code, whereby face images close to the center of
the space are there because the DCNN fails to code them across multiple contrastive
dimensions. This unique DCNN structure may be due to the need to accommodate, at high
(B)

(C) (A) (E)

(D)

Figure 3. Structure of Deep Convolutional Neural Network (DCNN) Face Space for 25K images. (A) A face space visualization of 25 000 face images from
[14]. Images close to the center of the space are of poor quality (B). Better-quality images radiate out from the center, with off-center views more prevalent in inner rings
around the center of the space (B, C, D), and frontal views located more peripherally (E). Visualization is created with t-SNE [79] – a dimensionality reduction technique
that uses stochastic gradient descent methods to preserve high-dimensional Euclidean distances between data points, while embedding them in low-dimensional
space. (Note: the t-SNE is used for illustration purposes only: faces in panels B–E were selected using their vector norms in the high-dimensional deep feature space.) t-
SNE, t-distributed stochastic neighbor embedding.
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Figure 4. A Single Identity in the Deep Convolutional Neural Network (DCNN) Face Space. Example of the
spatial layout of 140 images of a single identity in the DCNN space, visualized with t-SNE. The blue curve, which is hand-
drawn, roughly separates the non-frontal and frontal images in the space. t-SNE, t-distributed stochastic neighbor
embedding.
levels of abstraction, both the face identity and the individual images that comprise the model’s
experience with the face.

How do face identities and image data coexist in the unified space produced by DCNNs? The t-
SNE visualization allows us to expand any section of the space to examine the local
organization of image representations within an identity. Figure 4 shows face space locations
of 140 in-the-wild images of a single identity [14]. Frontal and off-frontal views of the person
separate roughly in the space (as indicated by the hand-drawn blue curve). Because the t-SNE
analysis shows a low-dimensional representation of a high-dimensional space, we can assume
that this structure explains substantial variation in the representation of this identity. This points
to an image-driven structure hierarchically nested within identity, melding identity and images in
a unitary space.

DCNN Representations Are Overkill
An intriguing feature of DCNNs is the highly compact nature of the face representation that
emerges at the top layer. How could a few hundred or even a few thousand features represent
Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9 805



such a large number of faces over such a wide variety of image and appearance variables? One
possibility is that each top-layer feature plays a critical role in representing the uniqueness of a
facial identity. This speculation appears incorrect. For object recognition networks, the
dimensionality of the DCNN output layer can be reduced substantially with little or no effect
on performance [55]. Beginning with multiple baseline networks, each with a 4096-dimensional
output layer, a reduction down to 2048 features actually improved object recognition perfor-
mance marginally [55]. A reduction of the output layer to 1024, and even to 128, features
resulted in an average performance drop of only 2%!

Interpreting this finding is challenging, but there are clues in a recent study [56] that examined
the semantic meaning of individual top-level units in DCNNs. That study begins with the
premise that traditional computer vision systems rely on feature extraction, whereby single
features are interpretable as meaningful variations in the image input domain (e.g., ‘x detec-
tors’). The coordinates in this space provide a semantic ‘read-out’ of the stimulus (e.g., face)
from the individual feature units (e.g., big nose, round face). For DCNNs, however, there is no
distinction in semantic meaning between individual high-level feature values and random linear
Box 3. Little Networks, Little Problems; Big Networks, Big Problems

A caveat to the success of DCNNs is that these networks can be attacked by ‘adversarial images’ [72]. Specifically,
small perturbations, added to an image that a DCNN would classify correctly, can cause the network to misclassify the
image – often with high confidence. Remarkably, for human perceivers, the adversarial image can appear visually
identical to the original (see Figure I). Adversarial attacks pose an enormous challenge for DCNN applications that
operate on in-the-wild images. Imagine generating a perturbation to an input image in a self-driving car that causes a
stop sign to be classified as a yield sign.

Why do adversarial attacks succeed? Simply put, CNNs learn a mapping from input image space to feature space. In
this nonlinear transformation, there will be points that are close in image space, but distant in DCNN feature space.
Adversarial attacks find these points, sometimes with the aid of the network itself (white box attack) and sometimes with
the aid of other networks trained on similar data (black box attack). The deeper the network, the more nonlinear the
mapping. Consequently, breakthroughs that have allowed for deeper networks that increase performance markedly
have opened the networks up even more to adversarial vulnerabilities. Methods for combating these attacks are being
developed with multiple strategies (e.g., [73–75]) that show some success.

From a visual system perspective, the finding that two perceptually identical images can be physically quite distinct is not
new. For example, metamers in color vision, discovered in the 1800s, showed that the perceived color of a monochromatic
light could be matched exactly by a linear combination of three other wavelengths [76]. Color metamers provided the first
scientific evidence for the trichromatic nature of human color vision [77]. It remains to be seen whether an understanding of
adversarial metamers for DCNNs will likewise result in a better understanding of the fundamental nature of the high-level
visual representations in the primate visualsystem.However, it isclear that the existenceofDCNN metamers, isnot, inandof
itself, a finding that disqualifies DCNNs as a potential model of the ventral temporal cortex.

Figure I. Example of an Adversarial Image. Image that a DCNN identifies as a horse with 88% confidence (left).
Adversarial perturbation (center). Perturbed image (i.e., original image plus adversarial perturbation) (right). The same
DCNN identifies this as a bicycle with 92% confidence!
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Outstanding Questions
Should DCNN models of faces be
trained with objects and scenes to
leverage global distinctions in the
structure of the ventral temporal cortex
for broad categorical distinctions (e.g.,
animate/inanimate; faces, objects, and
place; retinal eccentricities) and local
within-category specializations? Or, is
a modular approach to learning faces
more valid in neural terms?

Is there a fundamental difference
between the lower or upper layers of
DCNNs trained for object categoriza-
tion and face identification? Or, do they
generate similar feature spaces? If
there is a difference, is it due to the
different training tasks or to different
sets of training images?

How can DCNN research impact and
relate to feature spaces in the human
brain? Can DCNNs model multiple
face-selective regions?

In addition to the finding that DCNN-
generated face representations con-
tain information about image parame-
ters, do they also contain information
about superordinate face categories
such as gender and age?

How should data quality be defined?
What role does data quality play in the
formation of face representations that
generalize well across image variation
and at what stage of training is data
quality most important?

How do DCNN architectures, as well
as loss functions and other processing
decisions, affect the representation of
faces in DCNNs?

Are all DCNN architectures created
equal? Is there a critical mass of con-
nections beyond which the nature of
the emergent representation stays
more or less stable? Or, do particular
characteristics of network architecture
matter?

If semantic information in faces resides
in random directions through a neural
combinations of features (i.e., random directions) in the space [56]. The authors conclude,
therefore, that the space, rather than the individual units, contains the semantic stimulus
information.

A fundamental implication of this change of perspective is that it throws doubt on the possibility of
understanding the meaning of the high-level feature units (neurons) in terms of their response
properties. Semantic characterization of units as ‘x detectors’ may give us little insight into the
nature of the visual code (Box 2). Instead, the DCNN space presents a needle-in-the-hay-stack
‘search problem’ for meaning. The number of random directions in the space is so overwhelming
that a search forsemantic meaning must transcend the limits of probing theresponse properties of
the feature units themselves. If meaning resides in directions through the space, it is not surprising
that features can operate both in a view-invariant and in a view-dependent way [14].

If all random directions in the space are potentially meaningful semantically, even a low-
dimensional DCNN face space (a few hundred dimensions) has more capacity than we need
for the number of human faces we learn in a lifetime. The vastness, and perhaps ‘emptiness’, of
the DCNN space, even when it is storing enormous numbers of images, may help to explain
why, on occasion, face/object identification by DCNNs can go surprisingly astray (see Box 3).

From a neural perspective, in recent work [57], a measure of generalization accuracy as a
function of representational complexity was developed. For object recognition, DCNNs scored
better on this measure than the IT cortex, suggesting that DCNNs rival representations in
primate IT cortex [57] (see Box 2).

Concluding Remarks
DCNNs have made progress on long-standing problems in computer vision that seemed
intractable only 5 years ago. For their performance alone, DCNN representations are worthy of
serious study. It has been shown that these models now perform at a level equal to the best
humans (professional forensic face examiners and super-recognizers) [58]. Beyond that,
however, DCNNs were designed, decades ago (see Box 1), to exploit the computational
strategy used by the primate visual system. Only recently has it been possible to train these
networks to find a complex mapping between images and categories, using enormous data
sets of face images – sampled as they might be in a natural visual world. As a proof of principle,
DCNNs qualify as a promising model of neurally-inspired face representations in high-level
visual cortex. At present, our knowledge of how DCNNs work is limited, but the research paths
ahead are open to exploration (see Outstanding Questions).
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