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People recognize faces across changes in viewpoint, illumina-
tion, facial expression and appearance (for example, glasses, 
facial hair). The nature of the visual representation that sup-

ports this skill, however, is unknown, despite decades of research 
in psychology and neuroscience1–5. Historically, alternative hypoth-
eses about face representations posited that the primate visual sys-
tem reconstructs an object-centred facsimile of a face1,6 or that it 
represents multiple image-based views of faces3,4,7. Computational 
models built on these hypotheses illustrate clearly the benefits and 
pitfalls of object-centred and image-based face representations.

In early image-based models, principal component analysis 
(PCA) was applied to sets of face images8 to create a face space9. This 
model accounts for the human recognition costs incurred when 
imaging conditions change between learning and test10. It also pro-
vides insight into the gender11, race12, feature13 and identity11 infor-
mation in face images. However, image-based PCA works only when 
the learned and test images are taken under similar conditions.

The limitations of image-based models led to the development 
of three-dimensional (3D) morphable models14, which represent 
faces rather than images of faces. These models operate on densely 
sampled shape and pigmentation information from laser scans of 
faces. As with image-based models, a face space is created by apply-
ing PCA to sets of faces. In this space, individual identities are 
defined as trajectories that radiate out from the average face. As a 
face moves away from the average along its identity trajectory, it 
becomes increasingly distinctive, changing from anti-caricature to 
veridical, and then to caricature. The effect of this manipulation is 
to exaggerate differences between individual faces and an ‘average’ 
face. The paradox of caricatures is that they portray a good likeness 
of a person with a distorted image. Psychological studies indicate 
that caricature-based distortions do not hinder, and in some cases 
even enhance, human perception of face identity15–19. Morphable 
models provide a transparent account of human caricature percep-
tion9,20. However, they provide no mechanism to account for the 
human recognition costs incurred when images differ in viewpoint 
or illumination.

Over the years, object-centred and image-based models have 
made progress on the problem of generalized face/object recogni-
tion. However, neither provides a unified account of how the visual 
system simultaneously discriminates facial identities while man-
aging (filtering out or encoding) image and appearance variation. 
Following these early approaches, practical progress on automatic 
face recognition was made primarily via the use of increasingly 
sophisticated techniques for extracting features from face images 
(for example, see refs. 21–23), including features inspired by human 
vision3,24. Theoretical progress came from Bayesian approaches to 
face25 and object recognition, which highlighted the importance of 
statistical priors in constraining solutions to generalized visual rec-
ognition. However, problems in obtaining adequate priors limited 
the practical application of these models.

Deep convolutional neural networks (DCNNs) are now the state 
of the art in machine-based face recognition, because they can 
generalize identity across variable images26–30. These networks are 
modelled after the primate visual system31,32 and consist of multiple 
layers of simulated neurons that perform nonlinear convolution 
and pooling operations. DCNN representations expand in early lay-
ers of the network, but are compressed in the top layers through 
a bottleneck of neurons. The representation of facial identity that 
emerges at the final layer of a DCNN is compact and can operate 
robustly over changes in image parameters (for example, viewpoint) 
and appearance.

In DCNNs, decades of progress in face recognition models are 
brought to bear. These include critical aspects of prior probabilities, 
as well as elements of object-centred and image-based representa-
tions. DCNNs learn features from statistical mappings between 
images and label-based categories by training with large-scale data-
sets. This replaces preset features (for example, ref. 21) with features 
learned from training data. The use of learned features incorporates 
prior probabilities to build a system with general knowledge of faces. 
Similar to object-centred models, DCNNs represent identity with 
a code that is robust to changes in view and illumination. Similar 
to image-based models, the representations retain information  
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about the images they process33,34. Specifically, features from the top 
layer of DCNNs trained for face recognition support reliable lin-
ear readout of the viewpoint (yaw, pitch) of the input image33. This 
is consistent with a theoretical approach proposing that primate 
visual processing ‘untangles’ non-category information in an image, 
rather than removing it outright35. This theory has been supported 
by object recognition studies showing that high-performing object 
recognition DCNNs retain image information in their outputs36,37.

Deep networks offer a proof of principle that a robust coding 
of high-level visual information can coexist with instance-based 
codes that retain characteristics of the imaging conditions. But how 
do DCNN codes accomplish the balancing act of accommodat-
ing facial identity and image information in a unitary representa-
tion? It has been difficult to directly address this question, because 
viewpoint, illumination and the number/quality of images for each 
identity are not controlled in the datasets used to train DCNNs. To 
overcome this challenge, we probed a network trained with ‘in-the-
wild’ face images using an ‘in-the-lab’ dataset. Specifically, we used 
highly controlled laser scans of faces to examine how DCNNs rep-
resent faces in terms of subject parameters (identity, gender) and 
image characteristics (viewpoint, illumination).

To probe the representation of identity in a DCNN, we manipu-
lated the strength of identity information in a face by caricaturing. 
Historically, artists have created caricatures by exaggerating the fea-
tures in an individual’s face that are distinctive relative to a popula-
tion expectation. For example, caricatures of Angelina Jolie show 
exaggerated lip fullness and cheekbones. Computer-generated cari-
catures (for example, refs. 14,38), which have existed since the mid-
1980s38, systematically distort face features relative to a computed 
average face. Decades of face recognition experiments indicate that 
people see caricatures as a ‘good likeness’ of the face39. Moreover, 
caricatures, despite their distortion, are recognized as well as, or 
more accurately than, veridical faces39.

Manipulating the strength of identity information in a face 
through caricaturing and anti-caricaturing is a powerful tool  
for understanding how DCNNs code face identity. Given the 
psychological data, caricatures allow us to relate DCNN identity  
codes to those created by the human visual system. Specifically, 
caricatures are spatially and chromatically distorted in the image 
domain, but human perception creates an identity equivalence for 
these distortions. To model human perception, DCNNs should 
show identity constancy between faces and their caricatures. 
Moreover, this constancy should prevail over changes in viewpoint 
and illumination.

Results
Face space visualization. We examined the organization of imag-
ing characteristics and subject variables in the DCNN top-layer face 
representation using a face space framework9,40. In this framework, 
the distance between points in the space reflects the similarity of face 
images as ‘perceived’ by the top layer of the DCNN. We report data 
on a 101-layered face identification DCNN30 trained with 5,714,444 
in-the-wild images (Fig. 1a, for illustration) of 58,020 identities. The 
top-layer output of the network is a 512-element face representa-
tion. To demonstrate the robustness of the results across network 
architecture variation, we report a replication of these experiments 
on an architecturally distinct network (Supplementary Figs. 5–12 
and Supplementary Tables 2, 3 and 5).

Images were created from laser scans of 70 male and 70 female 
heads registered to a parametric 3D face model14. Each face  
was rendered from five viewpoints (yaw: 0�

I
 (frontal), 20�

I
, 30�
I

, 45�
I

 
and 60�

I
 (left profile)) under two illumination conditions (ambi-

ent and directional spotlight). This produced 1,400 images  
(Fig. 1b), which we processed through the DCNN to produce a top-
layer representation for each image. To examine the structure and 
information content of the face space that emerges at the top layer  

of units in DCNNs, we visualized the face space representations of 
the 1,400 images using t-distributed stochastic neighbour embed-
ding (t-SNE)41.

Figure 2 shows the hierarchical organization of the face space 
with respect to gender, identity, illumination and viewpoint. 
Identities were separated with high accuracy (area under the curve 
(AUC) �

I
 1), indicating that the DCNN recognizes faces across 

substantial variability in viewpoint and illumination. The space is 
separated roughly into two clusters, by gender (Fig. 2a). Within each 
identity cluster, face images from the two illumination conditions 
separate into sub-clusters (Fig. 2b,e). Within each illumination sub-
cluster, images are arranged systematically by viewpoint, like beads 
on a chain (Fig. 2c,f). This demonstrates a highly organized repre-
sentation of image information in a robust identity code. For direct 
distance measures of this hierarchical structure in the full-dimen-
sional space, see Supplementary Fig. 1 and Supplementary Table 1.

Next, we quantified the accessibility of gender, illumination, and 
viewpoint in the full high-dimensional space, using a linear clas-
sifier. All three variables were predicted accurately from the face 
representations (P<0:001

I
 in all cases). Viewpoint was detected 

with an average error of 6.34° (s:d: ¼ 4:95
I

), illumination classifica-
tion was 95.21% correct and gender classification was 98.21% cor-
rect (Supplementary Fig. 2). This demonstrates the accurate linear 
readout of image and subject information from the high-dimen-
sional top-layer face representation. Notably, this indicates that the 
structure of the image-based information across identities resides 
in systematic directions in the high-dimensional space that do not 
explain sufficient variation to appear in a 2D projection.
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Fig. 1 | Examples of face images. a, Training was carried out on real-world 
unconstrained face images, similar to those pictured. b,c, Testing was 
performed on highly controlled laser-scan data varying by viewpoint and 
illumination (b) and identity strength (c).
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Identity strength in the face space. To examine facial distinctive-
ness, we used the 3D head model to generate morphs that varied in 
the strength of the identity information (that is, caricature level) in 
the face40. Following the identity trajectory, each face was morphed 
from a caricature (high identity strength) to a near-average face 
(low identity strength) in five equal steps. This yielded six versions 
of each face (150%, 125% (caricature); 100% (veridical); 75%, 50%, 
25% (anti-caricature)). The addition of identity strength increased 
the dataset to 8,400 images (Fig. 1c).

Figure 3 shows the t-SNE face space with the inclusion of iden-
tity strength variation. Faces with weak identity information are 
grouped according to other variables (gender, view, illumination). 
Specifically, Fig. 3a shows that mixed-identity clusters are scattered 
among correctly clustered identities and Fig. 3b shows that mixed-
identity regions contain only faces with weak identity strength. Each 
identity-mixed cluster contains images of a single viewpoint (Fig. 3c),  
nested within a single illumination condition (Fig. 3d), and within a 
gender group (Fig. 3e). Enlarged view sections (Fig. 3f–h) show that 

within an identity cluster, images divide by illumination conditions 
(Fig. 3f). Viewpoints also divide, with caricature levels arranged in 
string-like groups (Fig. 3g). Caricatures are centred in identity clus-
ters (Fig. 3h), showing that same-identity caricatures cluster more 
closely over image variation than veridicals and anti-caricatures (see 
Supplementary Information).

Caricature and identity. Face identification amounts to a decision 
as to whether two images depict the same or different identities. 
This decision is based on the cosine similarity between the top-
layer representations of the two images (higher similarities suggest 
the same identity). Accuracy can be visualized using the similarity 
distributions for same- and different-identity image pairs (wider 
separation indicates higher accuracy).

Figure 4a shows that caricaturing improves the network’s iden-
tification accuracy by increasing the ‘perceptual’ contrast between 
faces as caricature level increases. This is seen as a leftward drift 
of the different-identity distribution (Supplementary Fig. 1 and 
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Fig. 2 | Visualization of the top-level DCNN similarity space for all images. a–f, Points are coloured according to different variables. Grey polygonal 
borders are for illustration purposes only and show the convex hull of all images of each identity. These convex hulls are expanded by a margin for visibility. 
The network separates identities accurately. In a,d, the space is divided into male and female sections. In b,e, illumination conditions subdivide within 
identity groupings. In c,f, the viewpoint varies sequentially within illumination clusters. Dotted-line boxes in a–c show areas enlarged in d–g.
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Supplementary Table 1). Caricaturing does not appreciably move 
the same-identity distribution. However, consistent with its effects 
on minimizing the impact of imaging parameters (Fig. 3h), the 
range of similarity values in this distribution compresses toward 
the upper bound as caricature level increases (Supplementary  
Fig. 3 and Supplementary Table 4). Although the accuracy bene-
fit here is modest due to a ceiling effect, larger performance gains 
would be expected if the data were more challenging (for example, 
more similar identities, more diverse imaging conditions).

Next, we asked whether the DCNN ‘sees’ the caricature as the 
same identity as its corresponding veridical face. Figure 4b indi-
cates that it does. We looked at the similarity between veridicals and 
their corresponding images across caricature levels. The network 
perceives 75% anti-caricatures and caricatures as nearly equivalent 
to veridicals (Fig. 4b). The 25% and 50% anti-caricatures are less 
similar to their veridical faces. The caricatures (125%, 150%) are 
clustered with the correct identities. These data indicate that the dif-
ference in identity grouping for the caricatures (125% and 150%) is 
not due to distortion level, per se, but rather to the type of distor-
tion. This is supported by the fact that identity-strength distortions 

of equal magnitude (50% to 100% and 100% to 150%) result in dif-
ferent similarity score outcomes (Fig. 4b).

Caricaturing, therefore, affects DCNN perception by exaggerat-
ing a face’s unique identity information relative to other faces in the 
population without impairing identity perception.

Caricature and image conditions, viewpoint and illumination. 
How does image-based information interact with identity con-
stancy? Figure 5 shows that imaging conditions affect the DCNN’s 
perception of face similarity. Changes in viewpoint and/or illumi-
nation can be seen as peaks in the similarity score distributions for 
same-identity pairs (top row), at all levels of caricature. For higher 
identity strengths (≥75%), different-identity distributions (bot-
tom row) separate visibly from same-identity distributions, and the 
salience of image-based similarity is attenuated. This shows that 
identity—not imaging condition—is the primary determiner of 
dissimilarity for different-identity pairs. Imaging condition effects 
reappear with weak identity strengths (≤50%). These near-average 
faces approach a single (average) identity that varies only by imag-
ing condition. Therefore, similarity in the DCNN encompasses both 
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Fig. 3 | Visualization of top-level similarity space with identity strength variation. a, Grey polygons surround identity-constant clusters, which appear 
among mixed-identity clusters (not enclosed in polygons). Each polygon is calculated as the convex hull of all images of an identity, where identity 
strength is 75% or greater. The polygons are provided only for the purpose of visualization. b–e, The same plot as displayed in a, but colour-coded 
according to the different variables. Points colour-coded by identity strength show that mixed-identity regions contain weak identity strength images (b). 
Points colour-coded by viewpoint show that each identity-mixed cluster contains images of a single viewpoint (c). Points colour-coded by illumination 
show that viewpoints are nested within illumination conditions (d). Points colour-coded by gender show that the gender division of the space is retained 
with identity strength manipulation (e). f–h, Enlarged view sections show that within an identity-constant cluster, images divide by illumination conditions 
(f), viewpoints divide with caricature levels arranged in string shapes (g) and caricatures fall in the centre of the identity cluster (h).
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identity and viewing conditions, but on a different scale. Identity 
contributes far more than image conditions.

Discussion
Deep networks accomplish the balancing act of accommodating 
facial identity and image information in a unitary representation by 
generating an elegantly organized face similarity space. To under-
stand this organization, we distinguish between person properties 
(for example, identity, gender and race) and specific images (for 
example, viewpoint and illumination). The former, immutable 

characteristics divide the face space into sub-space partitions that 
are homogeneous with respect to their defining person character-
istics. The latter, variable properties, are accommodated within the 
homogeneous subspaces, yet they apply to all identities.

Being able to access information about object/person properties 
at multiple levels of abstraction is a computational goal of a visual 
categorization system42. In psychological terms, the topology of the 
DCNN space organizes faces to allow easy access to person proper-
ties at different levels of abstraction. The space itself defines a basic-
level category of faces. The position of an image in the face space 
indicates a subordinate gender category, and the position in this 
gender category specifies an exemplar category of identity42,43.

To access the fundamental person property of identity, the 
DCNN must code the uniqueness of a face across variable image 
conditions. The robust nature of this identity information in a 
DCNN is inherited from the topology of its similarity space, which 
is highly nonlinear with respect to image properties. Two widely 
different images (for example, frontal versus profile) are coded as 
similar, because the network represents identity categorically.

The use of caricaturing to probe the organization of the face 
space provides a unique vantage point for seeing how identity and 
image information interact in a DCNN. Caricaturing affects DCNN 
performance because it operates both within individual identity 
clusters and at the level of face populations. Within identity clusters, 
caricatured faces minimize the influence of imaging parameters. At 
the population level, caricaturing increases the separation between 
identities in the space, making them less confusable. The increased 
distinctiveness of caricatures is primarily the result of the leftward 
drift of the different-identity distribution. To a lesser extent, this 
is augmented by the compression of the same-identity distribution 
toward the maximum cosine value of one (that is, same identity).

From a psychological perspective, the DCNN’s combined repre-
sentation of identity and actual images provides a unified account 
of behavioural effects seen historically as evidence for exclusively 
image-based or object-centred theories of face processing. DCNN 
representations are compatible with a face recognition cost for 
changes in image parameters between learning and testing. They 
are also compatible with effects of face distinctiveness relative to a 
population. The accord between behavioural results and deep net-
work representations, combined with the network’s ability to pro-
duce a robust representation of identity, makes a DCNN a plausible 
model of human face processing.

In the present work, we address recognition of identities ‘unfa-
miliar’ to the network. Specifically, the DCNN uses its general 
face knowledge to process novel faces. Future work could address 
how ‘familiarity’ with a particular face, via exposure to in-the-wild 
images, alters the face representation to generalize recognition 
further. Multiple stages of DCNN training can be targeted in this 
endeavour34. Moreover, we have focused on the top-layer represen-
tation in assessing general accord to human face processing. This 
does not preclude equal or better accord at lower network layers, as 
has been found for different tasks in object recognition (for exam-
ple, see ref. 44). For face processing, additional research is needed to 
address questions about whether particular network layers model 
particular behavioural results.

From a neuroscience perspective, DCNN representations rec-
oncile the seemingly paradoxical nature of ventral temporal cortex 
organization as both object-categorical and reflective of low-level 
image properties such as viewpoint45,46, illumination47, size48 and 
position49. For the former, structure exists in the organization of per-
son properties in subspaces. For the latter, structure within identity 
subspaces is duplicated across identities to index image properties. 
Although there are compelling similarities between DCNNs and 
the human visual system, there are also key differences. For exam-
ple, DCNNs are supervised, whereas learning in neural systems is 
probably unsupervised. Notwithstanding this, the human–network 
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Fig. 4 | Caricature effects. a, Image-pair similarity score distributions show 
that accuracy increases with caricature level. This is due to the greater 
dissimilarity of caricatures to other identities (leftward drift of the different-
identity distribution). b, Similarity distributions of same-identity pairs at 
differing levels of caricature, each compared to the veridical face. Low-
identity-strength images (25% and 50%) are less similar to the veridical 
(pink and yellow distributions), whereas high-identity-strength images 
(75–150%) are largely equivalent to the veridical (green through purple).
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accord we see here may be largely data-driven. The basic elements 
of face identity, captured in a non-retinotopic (categorical) domain, 
would probably group together without supervised learning. The 
key unsolved question concerns how it is possible to convert an 
image-based representation to a categorical identity representation 
without supervised learning.

Another pertinent question about the accord with neural sys-
tems involves the interpretability of the information captured by 
individual output units. Due to the nonlinear nature of the network, 
features deeper in the network are difficult to interpret semanti-
cally. Instead, semantic features are most likely found in directions 
through the multidimensional space50. For example, individual 
units in a face DCNN do not show consistent tuning properties for 
viewpoint33,34. However, the network retains information about both 
viewpoint and identity. Consequently, unit interpretability remains 
an active focus of research.

From a computational perspective, converting a representation 
in the image domain to one that operates in a categorical domain 
does not necessarily entail information loss. Instead, it can be 
achieved by reorganizing the space. Although much of this orga-
nization is sufficiently salient to be visualized in two dimensions, 
the full representation in the high-dimensional space drives these 
effects (and our computations). If the goal of a visual system is to 
reorganize the representational codes to ‘untangle’ information that 
is nonlinear in the image domain35, then the data configurations we 
arrive at here may offer a first look at how cascades of neural-like 
computations can represent face identity robustly with limited loss 
of image context.

Methods
Networks. To test the stability of the face space across network architectures 
and training data, we performed these simulations on two face identification 
DCNNs: network A51,52 (main text) and network B53. Network A is a ResNet-based 
DCNN trained with the Universe dataset51,52, which is a mixture of three datasets 
(UMDFaces54, UMDVideos51 and MS1M55). It includes images and video frames 
acquired in extremely challenging, in-the-wild conditions (pose, illumination and 
so on). We used the ResNet-10156 architecture with the Crystal Loss (L2 Softmax) 
loss function for training52. ResNet-101 consists of 101 layers organized with 
skip connections that retain error signal strength to leverage very deep CNN 
architectures. The scale factor α

I
 was set to 50. The final layer of the fully trained 

network was removed and the penultimate layer (512 features) was used as the 
identity descriptor. Once the training was complete, this penultimate layer was 
considered the ‘top layer’. Network B has 15 convolution and pooling layers, a 
dropout layer and a fully connected top layer that outputs a 320-dimensional 
identity descriptor. Network B was trained using a softmax loss function on the 
CASIA-WebFace dataset (494,414 images of 10,575 identities that vary widely in 
illumination, viewpoint and overall quality (blur, facial occlusion and so on)).

Morphing stimuli. Stimuli were made from 3D laser scans with densely sampled 
shape and reflectance data from faces. These scans were put into point-by-
point correspondence with an average face14. In this format, a face is described 
as a deformation field from the average face, in both shape ½δx; δy; δz

I
 and 

reflectance ½δr; δg; δb
I

. Identity strength was manipulated by multiplying the 
face representation by a scalar value, s, such that s>1

I
 produces a caricature and 

0< s<1
I

 produces an anti-caricature.

Visualization. Face space visualizations were performed with t-SNE, a nonlinear 
dimensionality reduction technique that uses gradient descent to preserve the 
distance between each point in a high-dimensional space, while reducing the 
number of dimensions57. t-SNE was used to reduce the DCNN’s 512-dimensional 
feature space to a 2D space. DCNNs use the angular distance between 
representations to compare images. To preserve this relationship in the space, face 
representation vectors were normalized to unit length before computing the t-SNE. 
We used the Barnes–Hut implementation of t-SNE41 with θ

I
 of 0.5, and perplexity 

coefficients of 30 (Fig. 2) and 100 (Fig. 3). We chose perplexity values following  
ref. 58. Specifically, perplexity can be interpreted as the number of ‘neighbours’  
of each point57, and therefore this value should increase as the number of points 
per cluster increases58. This increase in points per cluster applies between Figs. 2  
(10 images per identity) and 3 (60 images per identity). Again following ref. 58, 
we tested a range of values for each graph. We saw no change in the qualitative 
structure of groups based on perplexity value. Therefore, we selected the perplexity 
that yielded the most accessible visualization of the global structure.

Note that all quantitative analyses were conducted in the full  
512-dimensional space.

Classification. Linear discriminant analysis (LDA) was applied to the full-
dimensional face descriptors to classify gender and illumination. Linear regression 
with the Moore–Penrose pseudo-inverse was used to predict viewpoint. All 
predictions were conducted with identity-level cross-validation, as follows. 
Training data for each classifier in the cross-validation sequence consisted of 
the top-layer feature vectors for all images of all-but-one identity. The test data 
consisted of all images of the left-out identity. Output for gender and illumination 
was the predicted category. Output for viewpoint was the predicted viewpoint 
in degrees. This procedure was implemented 140 times, leaving out a different 
identity in each iteration. Performance for gender and illumination was measured 
as percent correct categorization. Performance for viewpoint was measured as the 
average error of the prediction in degrees.

Classifications generated from network B produced results similar to those 
generated from network A (see Supplementary Information). The statistical 
significances of both networks’ predictions were evaluated with permutation 
tests. A null distribution was generated from the original data matrix (columns, 
deep features; rows, images). We permuted the column contents to break the 
relationship between deep features, thus creating a null distribution that preserves 
the statistical structure of the real data. Permutations (n ¼ 1; 000

I
) were generated 

for each variable (gender, illumination, viewpoint). The resulting distributions 
were compared to the true value from each classification test. All permutation 
tests proved significant at P<0:001

I
, with no overlap between test value and null 

distribution. Network B produced the same results.

Data availability
All data used for analysis are available via the Open Science Framework at  
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Code availability
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Fig. 5 | Density curves of face image-pair cosine similarity scores. Overlap between same-identity (top row) and different-identity (bottom row) 
distributions decreases as identity strength increases. Within same-identity distributions, viewpoint and illumination differences are visible at all caricature 
levels as peaks in the distributions. These peaks are visible in the different-identity distributions only for weak identity strengths.
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