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Deep convolutional neural networks in the face
of caricature

Matthew Q. Hill®™, Connor J. Parde’, Carlos D. Castillo?, Y. Ivette Colén', Rajeev Ranjan?,
Jun-Cheng Chen?, Volker Blanz? and Alice J. O'Toole’

Real-world face recognition requires us to perceive the uniqueness of a face across variable images. Deep convolutional neural
networks (DCNNs) accomplish this feat by generating robust face representations that can be analysed in a multidimensional
‘face space'. We examined the organization of viewpoint, illumination, gender and identity in this space. We found that DCNNs
create a highly organized face similarity structure in which identities and images coexist. Natural image variation is organized
hierarchically, with face identity nested under gender, and illumination and viewpoint nested under identity. To examine iden-
tity, we caricatured faces and found that identification accuracy increased with the strength of identity information in a face,
and caricature representations ‘resembled’ their veridical counterparts—mimicking human perception. DCNNs therefore offer
a theoretical framework for reconciling decades of behavioural and neural results that emphasized either the image or the face

in representations, without understanding how a neural code could seamlessly accommodate both.

tion, facial expression and appearance (for example, glasses,

facial hair). The nature of the visual representation that sup-
ports this skill, however, is unknown, despite decades of research
in psychology and neuroscience'~. Historically, alternative hypoth-
eses about face representations posited that the primate visual sys-
tem reconstructs an object-centred facsimile of a face® or that it
represents multiple image-based views of faces**’. Computational
models built on these hypotheses illustrate clearly the benefits and
pitfalls of object-centred and image-based face representations.

In early image-based models, principal component analysis
(PCA) was applied to sets of face images® to create a face space’. This
model accounts for the human recognition costs incurred when
imaging conditions change between learning and test'. It also pro-
vides insight into the gender'!, race’?, feature'’ and identity"' infor-
mation in face images. However, image-based PCA works only when
the learned and test images are taken under similar conditions.

The limitations of image-based models led to the development
of three-dimensional (3D) morphable models', which represent
faces rather than images of faces. These models operate on densely
sampled shape and pigmentation information from laser scans of
faces. As with image-based models, a face space is created by apply-
ing PCA to sets of faces. In this space, individual identities are
defined as trajectories that radiate out from the average face. As a
face moves away from the average along its identity trajectory, it
becomes increasingly distinctive, changing from anti-caricature to
veridical, and then to caricature. The effect of this manipulation is
to exaggerate differences between individual faces and an ‘average’
face. The paradox of caricatures is that they portray a good likeness
of a person with a distorted image. Psychological studies indicate
that caricature-based distortions do not hinder, and in some cases
even enhance, human perception of face identity'*~". Morphable
models provide a transparent account of human caricature percep-
tion””. However, they provide no mechanism to account for the
human recognition costs incurred when images differ in viewpoint
or illumination.

P eople recognize faces across changes in viewpoint, illumina-

Over the years, object-centred and image-based models have
made progress on the problem of generalized face/object recogni-
tion. However, neither provides a unified account of how the visual
system simultaneously discriminates facial identities while man-
aging (filtering out or encoding) image and appearance variation.
Following these early approaches, practical progress on automatic
face recognition was made primarily via the use of increasingly
sophisticated techniques for extracting features from face images
(for example, see refs. *'~**), including features inspired by human
vision®*. Theoretical progress came from Bayesian approaches to
face”” and object recognition, which highlighted the importance of
statistical priors in constraining solutions to generalized visual rec-
ognition. However, problems in obtaining adequate priors limited
the practical application of these models.

Deep convolutional neural networks (DCNNs) are now the state
of the art in machine-based face recognition, because they can
generalize identity across variable images*~’. These networks are
modelled after the primate visual system’"*? and consist of multiple
layers of simulated neurons that perform nonlinear convolution
and pooling operations. DCNN representations expand in early lay-
ers of the network, but are compressed in the top layers through
a bottleneck of neurons. The representation of facial identity that
emerges at the final layer of a DCNN is compact and can operate
robustly over changes in image parameters (for example, viewpoint)
and appearance.

In DCNNG, decades of progress in face recognition models are
brought to bear. These include critical aspects of prior probabilities,
as well as elements of object-centred and image-based representa-
tions. DCNNs learn features from statistical mappings between
images and label-based categories by training with large-scale data-
sets. This replaces preset features (for example, ref. *') with features
learned from training data. The use of learned features incorporates
prior probabilities to build a system with general knowledge of faces.
Similar to object-centred models, DCNNs represent identity with
a code that is robust to changes in view and illumination. Similar
to image-based models, the representations retain information
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about the images they process™*. Specifically, features from the top
layer of DCNNs trained for face recognition support reliable lin-
ear readout of the viewpoint (yaw, pitch) of the input image®. This
is consistent with a theoretical approach proposing that primate
visual processing ‘untangles’ non-category information in an image,
rather than removing it outright®. This theory has been supported
by object recognition studies showing that high-performing object
recognition DCNNSs retain image information in their outputs™.

Deep networks offer a proof of principle that a robust coding
of high-level visual information can coexist with instance-based
codes that retain characteristics of the imaging conditions. But how
do DCNN codes accomplish the balancing act of accommodat-
ing facial identity and image information in a unitary representa-
tion? It has been difficult to directly address this question, because
viewpoint, illumination and the number/quality of images for each
identity are not controlled in the datasets used to train DCNNs. To
overcome this challenge, we probed a network trained with ‘in-the-
wild’ face images using an ‘in-the-lab’ dataset. Specifically, we used
highly controlled laser scans of faces to examine how DCNN s rep-
resent faces in terms of subject parameters (identity, gender) and
image characteristics (viewpoint, illumination).

To probe the representation of identity in a DCNN, we manipu-
lated the strength of identity information in a face by caricaturing.
Historically, artists have created caricatures by exaggerating the fea-
tures in an individual’s face that are distinctive relative to a popula-
tion expectation. For example, caricatures of Angelina Jolie show
exaggerated lip fullness and cheekbones. Computer-generated cari-
catures (for example, refs. '***), which have existed since the mid-
1980s*, systematically distort face features relative to a computed
average face. Decades of face recognition experiments indicate that
people see caricatures as a ‘good likeness’ of the face®. Moreover,
caricatures, despite their distortion, are recognized as well as, or
more accurately than, veridical faces™.

Manipulating the strength of identity information in a face
through caricaturing and anti-caricaturing is a powerful tool
for understanding how DCNNs code face identity. Given the
psychological data, caricatures allow us to relate DCNN identity
codes to those created by the human visual system. Specifically,
caricatures are spatially and chromatically distorted in the image
domain, but human perception creates an identity equivalence for
these distortions. To model human perception, DCNNs should
show identity constancy between faces and their caricatures.
Moreover, this constancy should prevail over changes in viewpoint
and illumination.

Results

Face space visualization. We examined the organization of imag-
ing characteristics and subject variables in the DCNN top-layer face
representation using a face space framework”>*. In this framework,
the distance between points in the space reflects the similarity of face
images as ‘perceived’ by the top layer of the DCNN. We report data
on a 101-layered face identification DCNN* trained with 5,714,444
in-the-wild images (Fig. 1a, for illustration) of 58,020 identities. The
top-layer output of the network is a 512-element face representa-
tion. To demonstrate the robustness of the results across network
architecture variation, we report a replication of these experiments
on an architecturally distinct network (Supplementary Figs. 5-12
and Supplementary Tables 2, 3 and 5).

Images were created from laser scans of 70 male and 70 female
heads registered to a parametric 3D face model. Each face
was rendered from five viewpoints (yaw: 0° (frontal), 20°, 30°, 45°
and 60° (left profile)) under two illumination conditions (ambi-
ent and directional spotlight). This produced 1,400 images
(Fig. 1b), which we processed through the DCNN to produce a top-
layer representation for each image. To examine the structure and
information content of the face space that emerges at the top layer
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Fig. 1| Examples of face images. a, Training was carried out on real-world
unconstrained face images, similar to those pictured. b,c, Testing was
performed on highly controlled laser-scan data varying by viewpoint and
illumination (b) and identity strength (c).

of units in DCNNS, we visualized the face space representations of
the 1,400 images using t-distributed stochastic neighbour embed-
ding (t-SNE)*'.

Figure 2 shows the hierarchical organization of the face space
with respect to gender, identity, illumination and viewpoint.
Identities were separated with high accuracy (area under the curve
(AUC) =~ 1), indicating that the DCNN recognizes faces across
substantial variability in viewpoint and illumination. The space is
separated roughly into two clusters, by gender (Fig. 2a). Within each
identity cluster, face images from the two illumination conditions
separate into sub-clusters (Fig. 2b,e). Within each illumination sub-
cluster, images are arranged systematically by viewpoint, like beads
on a chain (Fig. 2¢,f). This demonstrates a highly organized repre-
sentation of image information in a robust identity code. For direct
distance measures of this hierarchical structure in the full-dimen-
sional space, see Supplementary Fig. 1 and Supplementary Table 1.

Next, we quantified the accessibility of gender, illumination, and
viewpoint in the full high-dimensional space, using a linear clas-
sifier. All three variables were predicted accurately from the face
representations (P<0.001 in all cases). Viewpoint was detected
with an average error of 6.34° (s.d. = 4.95°), illumination classifica-
tion was 95.21% correct and gender classification was 98.21% cor-
rect (Supplementary Fig. 2). This demonstrates the accurate linear
readout of image and subject information from the high-dimen-
sional top-layer face representation. Notably, this indicates that the
structure of the image-based information across identities resides
in systematic directions in the high-dimensional space that do not
explain sufficient variation to appear in a 2D projection.
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Fig. 2 | Visualization of the top-level DCNN similarity space for all images. a-f, Points are coloured according to different variables. Grey polygonal
borders are for illustration purposes only and show the convex hull of all images of each identity. These convex hulls are expanded by a margin for visibility.
The network separates identities accurately. In a,d, the space is divided into male and female sections. In b,e, illumination conditions subdivide within
identity groupings. In ¢.f, the viewpoint varies sequentially within illumination clusters. Dotted-line boxes in a-¢ show areas enlarged in d-g.

Identity strength in the face space. To examine facial distinctive-
ness, we used the 3D head model to generate morphs that varied in
the strength of the identity information (that is, caricature level) in
the face®. Following the identity trajectory, each face was morphed
from a caricature (high identity strength) to a near-average face
(low identity strength) in five equal steps. This yielded six versions
of each face (150%, 125% (caricature); 100% (veridical); 75%, 50%,
25% (anti-caricature)). The addition of identity strength increased
the dataset to 8,400 images (Fig. 1¢).

Figure 3 shows the t-SNE face space with the inclusion of iden-
tity strength variation. Faces with weak identity information are
grouped according to other variables (gender, view, illumination).
Specifically, Fig. 3a shows that mixed-identity clusters are scattered
among correctly clustered identities and Fig. 3b shows that mixed-
identity regions contain only faces with weak identity strength. Each
identity-mixed cluster contains images of a single viewpoint (Fig. 3¢),
nested within a single illumination condition (Fig. 3d), and within a
gender group (Fig. 3e). Enlarged view sections (Fig. 3f-h) show that
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within an identity cluster, images divide by illumination conditions
(Fig. 3f). Viewpoints also divide, with caricature levels arranged in
string-like groups (Fig. 3g). Caricatures are centred in identity clus-
ters (Fig. 3h), showing that same-identity caricatures cluster more
closely over image variation than veridicals and anti-caricatures (see
Supplementary Information).

Caricature and identity. Face identification amounts to a decision
as to whether two images depict the same or different identities.
This decision is based on the cosine similarity between the top-
layer representations of the two images (higher similarities suggest
the same identity). Accuracy can be visualized using the similarity
distributions for same- and different-identity image pairs (wider
separation indicates higher accuracy).

Figure 4a shows that caricaturing improves the network’s iden-
tification accuracy by increasing the ‘perceptual’ contrast between
faces as caricature level increases. This is seen as a leftward drift
of the different-identity distribution (Supplementary Fig. 1 and
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Fig. 3 | Visualization of top-level similarity space with identity strength variation. a, Grey polygons surround identity-constant clusters, which appear
among mixed-identity clusters (not enclosed in polygons). Each polygon is calculated as the convex hull of all images of an identity, where identity
strength is 75% or greater. The polygons are provided only for the purpose of visualization. b-e, The same plot as displayed in a, but colour-coded
according to the different variables. Points colour-coded by identity strength show that mixed-identity regions contain weak identity strength images (b).
Points colour-coded by viewpoint show that each identity-mixed cluster contains images of a single viewpoint (¢). Points colour-coded by illumination
show that viewpoints are nested within illumination conditions (d). Points colour-coded by gender show that the gender division of the space is retained
with identity strength manipulation (e). f-h, Enlarged view sections show that within an identity-constant cluster, images divide by illumination conditions
(), viewpoints divide with caricature levels arranged in string shapes (g) and caricatures fall in the centre of the identity cluster (h).

Supplementary Table 1). Caricaturing does not appreciably move
the same-identity distribution. However, consistent with its effects
on minimizing the impact of imaging parameters (Fig. 3h), the
range of similarity values in this distribution compresses toward
the upper bound as caricature level increases (Supplementary
Fig. 3 and Supplementary Table 4). Although the accuracy bene-
fit here is modest due to a ceiling effect, larger performance gains
would be expected if the data were more challenging (for example,
more similar identities, more diverse imaging conditions).

Next, we asked whether the DCNN fsees’ the caricature as the
same identity as its corresponding veridical face. Figure 4b indi-
cates that it does. We looked at the similarity between veridicals and
their corresponding images across caricature levels. The network
perceives 75% anti-caricatures and caricatures as nearly equivalent
to veridicals (Fig. 4b). The 25% and 50% anti-caricatures are less
similar to their veridical faces. The caricatures (125%, 150%) are
clustered with the correct identities. These data indicate that the dif-
ference in identity grouping for the caricatures (125% and 150%) is
not due to distortion level, per se, but rather to the type of distor-
tion. This is supported by the fact that identity-strength distortions
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of equal magnitude (50% to 100% and 100% to 150%) result in dif-
ferent similarity score outcomes (Fig. 4b).

Caricaturing, therefore, affects DCNN perception by exaggerat-
ing a face’s unique identity information relative to other faces in the
population without impairing identity perception.

Caricature and image conditions, viewpoint and illumination.
How does image-based information interact with identity con-
stancy? Figure 5 shows that imaging conditions affect the DCNN’s
perception of face similarity. Changes in viewpoint and/or illumi-
nation can be seen as peaks in the similarity score distributions for
same-identity pairs (top row), at all levels of caricature. For higher
identity strengths (>75%), different-identity distributions (bot-
tom row) separate visibly from same-identity distributions, and the
salience of image-based similarity is attenuated. This shows that
identity—not imaging condition—is the primary determiner of
dissimilarity for different-identity pairs. Imaging condition effects
reappear with weak identity strengths (<50%). These near-average
faces approach a single (average) identity that varies only by imag-
ing condition. Therefore, similarity in the DCNN encompasses both
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Fig. 4 | Caricature effects. a, Image-pair similarity score distributions show
that accuracy increases with caricature level. This is due to the greater
dissimilarity of caricatures to other identities (leftward drift of the different-
identity distribution). b, Similarity distributions of same-identity pairs at
differing levels of caricature, each compared to the veridical face. Low-
identity-strength images (25% and 50%) are less similar to the veridical
(pink and yellow distributions), whereas high-identity-strength images
(75-150%) are largely equivalent to the veridical (green through purple).

identity and viewing conditions, but on a different scale. Identity
contributes far more than image conditions.

Discussion

Deep networks accomplish the balancing act of accommodating
facial identity and image information in a unitary representation by
generating an elegantly organized face similarity space. To under-
stand this organization, we distinguish between person properties
(for example, identity, gender and race) and specific images (for
example, viewpoint and illumination). The former, immutable
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characteristics divide the face space into sub-space partitions that
are homogeneous with respect to their defining person character-
istics. The latter, variable properties, are accommodated within the
homogeneous subspaces, yet they apply to all identities.

Being able to access information about object/person properties
at multiple levels of abstraction is a computational goal of a visual
categorization system™. In psychological terms, the topology of the
DCNN space organizes faces to allow easy access to person proper-
ties at different levels of abstraction. The space itself defines a basic-
level category of faces. The position of an image in the face space
indicates a subordinate gender category, and the position in this
gender category specifies an exemplar category of identity*>*.

To access the fundamental person property of identity, the
DCNN must code the uniqueness of a face across variable image
conditions. The robust nature of this identity information in a
DCNN is inherited from the topology of its similarity space, which
is highly nonlinear with respect to image properties. Two widely
different images (for example, frontal versus profile) are coded as
similar, because the network represents identity categorically.

The use of caricaturing to probe the organization of the face
space provides a unique vantage point for seeing how identity and
image information interact in a DCNN. Caricaturing affects DCNN
performance because it operates both within individual identity
clusters and at the level of face populations. Within identity clusters,
caricatured faces minimize the influence of imaging parameters. At
the population level, caricaturing increases the separation between
identities in the space, making them less confusable. The increased
distinctiveness of caricatures is primarily the result of the leftward
drift of the different-identity distribution. To a lesser extent, this
is augmented by the compression of the same-identity distribution
toward the maximum cosine value of one (that is, same identity).

From a psychological perspective, the DCNN’s combined repre-
sentation of identity and actual images provides a unified account
of behavioural effects seen historically as evidence for exclusively
image-based or object-centred theories of face processing. DCNN
representations are compatible with a face recognition cost for
changes in image parameters between learning and testing. They
are also compatible with effects of face distinctiveness relative to a
population. The accord between behavioural results and deep net-
work representations, combined with the network’s ability to pro-
duce a robust representation of identity, makes a DCNN a plausible
model of human face processing.

In the present work, we address recognition of identities ‘unfa-
miliar’ to the network. Specifically, the DCNN uses its general
face knowledge to process novel faces. Future work could address
how ‘familiarity’ with a particular face, via exposure to in-the-wild
images, alters the face representation to generalize recognition
further. Multiple stages of DCNN training can be targeted in this
endeavour™. Moreover, we have focused on the top-layer represen-
tation in assessing general accord to human face processing. This
does not preclude equal or better accord at lower network layers, as
has been found for different tasks in object recognition (for exam-
ple, see ref. *4). For face processing, additional research is needed to
address questions about whether particular network layers model
particular behavioural results.

From a neuroscience perspective, DCNN representations rec-
oncile the seemingly paradoxical nature of ventral temporal cortex
organization as both object-categorical and reflective of low-level
image properties such as viewpoint>*, illumination”, size*® and
position®. For the former, structure exists in the organization of per-
son properties in subspaces. For the latter, structure within identity
subspaces is duplicated across identities to index image properties.
Although there are compelling similarities between DCNNs and
the human visual system, there are also key differences. For exam-
ple, DCNNS are supervised, whereas learning in neural systems is
probably unsupervised. Notwithstanding this, the human-network
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Fig. 5 | Density curves of face image-pair cosine similarity scores. Overlap between same-identity (top row) and different-identity (bottom row)
distributions decreases as identity strength increases. Within same-identity distributions, viewpoint and illumination differences are visible at all caricature
levels as peaks in the distributions. These peaks are visible in the different-identity distributions only for weak identity strengths.

accord we see here may be largely data-driven. The basic elements
of face identity, captured in a non-retinotopic (categorical) domain,
would probably group together without supervised learning. The
key unsolved question concerns how it is possible to convert an
image-based representation to a categorical identity representation
without supervised learning.

Another pertinent question about the accord with neural sys-
tems involves the interpretability of the information captured by
individual output units. Due to the nonlinear nature of the network,
features deeper in the network are difficult to interpret semanti-
cally. Instead, semantic features are most likely found in directions
through the multidimensional space®. For example, individual
units in a face DCNN do not show consistent tuning properties for
viewpoint®**. However, the network retains information about both
viewpoint and identity. Consequently, unit interpretability remains
an active focus of research.

From a computational perspective, converting a representation
in the image domain to one that operates in a categorical domain
does not necessarily entail information loss. Instead, it can be
achieved by reorganizing the space. Although much of this orga-
nization is sufficiently salient to be visualized in two dimensions,
the full representation in the high-dimensional space drives these
effects (and our computations). If the goal of a visual system is to
reorganize the representational codes to ‘untangle’ information that
is nonlinear in the image domain®, then the data configurations we
arrive at here may offer a first look at how cascades of neural-like
computations can represent face identity robustly with limited loss
of image context.

Methods

Networks. To test the stability of the face space across network architectures

and training data, we performed these simulations on two face identification
DCNNSs: network A°*? (main text) and network B>, Network A is a ResNet-based
DCNN trained with the Universe dataset’"", which is a mixture of three datasets
(UMDFaces™, UMDVideos’' and MS1IM™). It includes images and video frames
acquired in extremely challenging, in-the-wild conditions (pose, illumination and
so on). We used the ResNet-101"° architecture with the Crystal Loss (L2 Softmax)
loss function for training®. ResNet-101 consists of 101 layers organized with

skip connections that retain error signal strength to leverage very deep CNN
architectures. The scale factor @ was set to 50. The final layer of the fully trained
network was removed and the penultimate layer (512 features) was used as the
identity descriptor. Once the training was complete, this penultimate layer was
considered the ‘top layer. Network B has 15 convolution and pooling layers, a
dropout layer and a fully connected top layer that outputs a 320-dimensional
identity descriptor. Network B was trained using a softmax loss function on the
CASIA-WebFace dataset (494,414 images of 10,575 identities that vary widely in
illumination, viewpoint and overall quality (blur, facial occlusion and so on)).

Morphing stimuli. Stimuli were made from 3D laser scans with densely sampled
shape and reflectance data from faces. These scans were put into point-by-

point correspondence with an average face'*. In this format, a face is described

as a deformation field from the average face, in both shape [3x, 8y, 8z] and
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reflectance (87, 8g, 8b]. Identity strength was manipulated by multiplying the
face representation by a scalar value, s, such that s> 1 produces a caricature and
0<s<1 produces an anti-caricature.

Visualization. Face space visualizations were performed with ¢-SNE, a nonlinear
dimensionality reduction technique that uses gradient descent to preserve the
distance between each point in a high-dimensional space, while reducing the
number of dimensions™”. t-SNE was used to reduce the DCNN’s 512-dimensional
feature space to a 2D space. DCNNs use the angular distance between
representations to compare images. To preserve this relationship in the space, face
representation vectors were normalized to unit length before computing the ¢-SNE.
We used the Barnes-Hut implementation of t-SNE* with @ of 0.5, and perplexity
coefficients of 30 (Fig. 2) and 100 (Fig. 3). We chose perplexity values following
ref. *%. Specifically, perplexity can be interpreted as the number of ‘neighbours’
of each point”, and therefore this value should increase as the number of points
per cluster increases™. This increase in points per cluster applies between Figs. 2
(10 images per identity) and 3 (60 images per identity). Again following ref. **,
we tested a range of values for each graph. We saw no change in the qualitative
structure of groups based on perplexity value. Therefore, we selected the perplexity
that yielded the most accessible visualization of the global structure.

Note that all quantitative analyses were conducted in the full
512-dimensional space.

Classification. Linear discriminant analysis (LDA) was applied to the full-
dimensional face descriptors to classify gender and illumination. Linear regression
with the Moore-Penrose pseudo-inverse was used to predict viewpoint. All
predictions were conducted with identity-level cross-validation, as follows.
Training data for each classifier in the cross-validation sequence consisted of

the top-layer feature vectors for all images of all-but-one identity. The test data
consisted of all images of the left-out identity. Output for gender and illumination
was the predicted category. Output for viewpoint was the predicted viewpoint

in degrees. This procedure was implemented 140 times, leaving out a different
identity in each iteration. Performance for gender and illumination was measured
as percent correct categorization. Performance for viewpoint was measured as the
average error of the prediction in degrees.

Classifications generated from network B produced results similar to those
generated from network A (see Supplementary Information). The statistical
significances of both networks’ predictions were evaluated with permutation
tests. A null distribution was generated from the original data matrix (columns,
deep features; rows, images). We permuted the column contents to break the
relationship between deep features, thus creating a null distribution that preserves
the statistical structure of the real data. Permutations (n = 1, 000) were generated
for each variable (gender, illumination, viewpoint). The resulting distributions
were compared to the true value from each classification test. All permutation
tests proved significant at P <0.001, with no overlap between test value and null
distribution. Network B produced the same results.

Data availability
All data used for analysis are available via the Open Science Framework at
https://osf.io/ebvys/.

Code availability
All of the code used for plotting and analysis is available via the Open Science
Framework at https://osf.io/ebvys/.
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